吉尔伯特随机图的零一定律

G. McColm
{"title":"吉尔伯特随机图的零一定律","authors":"G. McColm","doi":"10.1109/LICS.1996.561448","DOIUrl":null,"url":null,"abstract":"We look at a competitor of the Erdos-Renyi models of random graphs, one proposed by E. Gilbert (1961): given /spl delta/>0 and a metric space X of diameter >/spl delta/, scatter n vertices at random on X and connect those of distance </spl delta/ apart: we get a random graph G/sub n,/spl delta///sup X/. Question: for fixed X, /spl delta/, do we have 0-1 laws for FO logic? We prove that this is true if X is a circle.","PeriodicalId":382663,"journal":{"name":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Zero-one laws for Gilbert random graphs\",\"authors\":\"G. McColm\",\"doi\":\"10.1109/LICS.1996.561448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We look at a competitor of the Erdos-Renyi models of random graphs, one proposed by E. Gilbert (1961): given /spl delta/>0 and a metric space X of diameter >/spl delta/, scatter n vertices at random on X and connect those of distance </spl delta/ apart: we get a random graph G/sub n,/spl delta///sup X/. Question: for fixed X, /spl delta/, do we have 0-1 laws for FO logic? We prove that this is true if X is a circle.\",\"PeriodicalId\":382663,\"journal\":{\"name\":\"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.1996.561448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1996.561448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们看一下Erdos-Renyi随机图模型的一个竞争者,一个由E. Gilbert(1961)提出的模型:给定/spl delta/>0和一个直径>/spl delta/的度量空间X,在X上随机分散n个顶点,并将距离本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Zero-one laws for Gilbert random graphs
We look at a competitor of the Erdos-Renyi models of random graphs, one proposed by E. Gilbert (1961): given /spl delta/>0 and a metric space X of diameter >/spl delta/, scatter n vertices at random on X and connect those of distance
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信