基于自动估计簇数的稀疏子空间聚类视频摘要

Pengyi Hao, Edwin Manhando, Taotao Ye, Cong Bai
{"title":"基于自动估计簇数的稀疏子空间聚类视频摘要","authors":"Pengyi Hao, Edwin Manhando, Taotao Ye, Cong Bai","doi":"10.1145/3338533.3366593","DOIUrl":null,"url":null,"abstract":"Advancements in technology resulted in a sharp growth in the number of digital cameras at people's disposal all across the world. Consequently, the huge storage space consumed by the videos from these devices on video repositories make the job of video processing and analysis to be time-consuming. Furthermore, this also slows down the video browsing and retrieval. Video summarization plays a very crucial role in solving these issues. Despite the number of video summarization approaches proposed up to the present time, the goal is to take a long video and generate a video summary in form of a short video skim without losing the meaning or the message transmitted by the original lengthy video. This is done by selecting the important frames called key-frames. The approach proposed by this work performs automatic summarization of digital videos based on detected objects' deep features. To this end, we apply sparse subspace clustering with an automatically estimated number of clusters to the objects' deep features. The summary generated from our scheme will store the meta-data for each short video inferred from the clustering results. In this paper, we also suggest a new video dataset for video summarization. We evaluate the performance of our work using the TVSum dataset and our video summarization dataset.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Video Summarization based on Sparse Subspace Clustering with Automatically Estimated Number of Clusters\",\"authors\":\"Pengyi Hao, Edwin Manhando, Taotao Ye, Cong Bai\",\"doi\":\"10.1145/3338533.3366593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advancements in technology resulted in a sharp growth in the number of digital cameras at people's disposal all across the world. Consequently, the huge storage space consumed by the videos from these devices on video repositories make the job of video processing and analysis to be time-consuming. Furthermore, this also slows down the video browsing and retrieval. Video summarization plays a very crucial role in solving these issues. Despite the number of video summarization approaches proposed up to the present time, the goal is to take a long video and generate a video summary in form of a short video skim without losing the meaning or the message transmitted by the original lengthy video. This is done by selecting the important frames called key-frames. The approach proposed by this work performs automatic summarization of digital videos based on detected objects' deep features. To this end, we apply sparse subspace clustering with an automatically estimated number of clusters to the objects' deep features. The summary generated from our scheme will store the meta-data for each short video inferred from the clustering results. In this paper, we also suggest a new video dataset for video summarization. We evaluate the performance of our work using the TVSum dataset and our video summarization dataset.\",\"PeriodicalId\":273086,\"journal\":{\"name\":\"Proceedings of the ACM Multimedia Asia\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3338533.3366593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338533.3366593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

科技的进步导致世界各地人们使用的数码相机数量急剧增加。因此,来自这些设备的视频在视频存储库中占用了巨大的存储空间,使得视频处理和分析工作非常耗时。此外,这也减慢了视频的浏览和检索速度。视频摘要在解决这些问题中起着至关重要的作用。尽管目前提出了许多视频摘要方法,但其目标是在不失去原长视频的意义或传递的信息的情况下,以短视频略读的形式生成视频摘要。这是通过选择称为关键帧的重要帧来完成的。本文提出的方法基于被检测对象的深度特征对数字视频进行自动摘要。为此,我们对对象的深度特征应用稀疏子空间聚类,并自动估计聚类的数量。从我们的方案生成的摘要将存储从聚类结果推断出的每个短视频的元数据。在本文中,我们还提出了一个新的视频数据集用于视频摘要。我们使用TVSum数据集和我们的视频摘要数据集来评估我们的工作性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Summarization based on Sparse Subspace Clustering with Automatically Estimated Number of Clusters
Advancements in technology resulted in a sharp growth in the number of digital cameras at people's disposal all across the world. Consequently, the huge storage space consumed by the videos from these devices on video repositories make the job of video processing and analysis to be time-consuming. Furthermore, this also slows down the video browsing and retrieval. Video summarization plays a very crucial role in solving these issues. Despite the number of video summarization approaches proposed up to the present time, the goal is to take a long video and generate a video summary in form of a short video skim without losing the meaning or the message transmitted by the original lengthy video. This is done by selecting the important frames called key-frames. The approach proposed by this work performs automatic summarization of digital videos based on detected objects' deep features. To this end, we apply sparse subspace clustering with an automatically estimated number of clusters to the objects' deep features. The summary generated from our scheme will store the meta-data for each short video inferred from the clustering results. In this paper, we also suggest a new video dataset for video summarization. We evaluate the performance of our work using the TVSum dataset and our video summarization dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信