训练统计对话系统的误差模拟

J. Schatzmann, Blaise Thomson, S. Young
{"title":"训练统计对话系统的误差模拟","authors":"J. Schatzmann, Blaise Thomson, S. Young","doi":"10.1109/ASRU.2007.4430167","DOIUrl":null,"url":null,"abstract":"Human-machine dialogue is heavily influenced by speech recognition and understanding errors and it is hence desirable to train and test statistical dialogue system policies under realistic noise conditions. This paper presents a novel approach to error simulation based on statistical models for word-level utterance generation, ASR confusions, and confidence score generation. While the method explicitly models the context-dependent acoustic confusability of words and allows the system specific language model and semantic decoder to be incorporated, it is computationally inexpensive and thus potentially suitable for running thousands of training simulations. Experimental evaluation results with a POMDP-based dialogue system and the Hidden Agenda User Simulator indicate a close match between the statistical properties of real and synthetic errors.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"41 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"Error simulation for training statistical dialogue systems\",\"authors\":\"J. Schatzmann, Blaise Thomson, S. Young\",\"doi\":\"10.1109/ASRU.2007.4430167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human-machine dialogue is heavily influenced by speech recognition and understanding errors and it is hence desirable to train and test statistical dialogue system policies under realistic noise conditions. This paper presents a novel approach to error simulation based on statistical models for word-level utterance generation, ASR confusions, and confidence score generation. While the method explicitly models the context-dependent acoustic confusability of words and allows the system specific language model and semantic decoder to be incorporated, it is computationally inexpensive and thus potentially suitable for running thousands of training simulations. Experimental evaluation results with a POMDP-based dialogue system and the Hidden Agenda User Simulator indicate a close match between the statistical properties of real and synthetic errors.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"41 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

摘要

人机对话受到语音识别和理解错误的严重影响,因此需要在现实噪声条件下训练和测试统计对话系统策略。本文提出了一种基于统计模型的错误模拟方法,用于单词级话语生成、ASR混淆和置信度评分生成。虽然该方法明确地模拟了上下文相关的单词的声学混淆性,并允许将系统特定的语言模型和语义解码器结合起来,但它在计算上便宜,因此可能适合运行数千个训练模拟。基于pomdp的对话系统和隐藏议程用户模拟器的实验评估结果表明,真实误差和合成误差的统计特性非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error simulation for training statistical dialogue systems
Human-machine dialogue is heavily influenced by speech recognition and understanding errors and it is hence desirable to train and test statistical dialogue system policies under realistic noise conditions. This paper presents a novel approach to error simulation based on statistical models for word-level utterance generation, ASR confusions, and confidence score generation. While the method explicitly models the context-dependent acoustic confusability of words and allows the system specific language model and semantic decoder to be incorporated, it is computationally inexpensive and thus potentially suitable for running thousands of training simulations. Experimental evaluation results with a POMDP-based dialogue system and the Hidden Agenda User Simulator indicate a close match between the statistical properties of real and synthetic errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信