利用CNN对水稻植株营养缺乏进行分类

S. Rizal, N. K. C. Pratiwi, N. Ibrahim, Nathaniel Syalomta, Muhammad Ikhwan Khalid Nasution, Indah Mutiah Utami Mz, Deva Aulia Putri Oktavia
{"title":"利用CNN对水稻植株营养缺乏进行分类","authors":"S. Rizal, N. K. C. Pratiwi, N. Ibrahim, Nathaniel Syalomta, Muhammad Ikhwan Khalid Nasution, Indah Mutiah Utami Mz, Deva Aulia Putri Oktavia","doi":"10.1109/ICISIT54091.2022.9873082","DOIUrl":null,"url":null,"abstract":"Nutrient deficiency often occurs in rice plants, thus affecting the level of production and quality of rice. Nutrient deficiency, in general, can be seen from the color and shape of sick leaves; therefore, it can be detected early to reduce the symptoms of nutritional deficiency in rice plants. This study classifies the symptoms of nutritional deficiency in rice plants using the Convolutional Neural Network (CNN) with ResNet 50 and ResNet 152 architectures. There are 1156 images with datasets sourced from Kaggle, divided into nitrogen (N) deficiency and Phosphorus(P) deficiency. And Potassium (K) deficiency. The dataset augmentation process used oversampling techniques to balance the data. The best results were obtained from the ResNet 50 architecture with accuracy and validation values yielding 98% and testing values 97%","PeriodicalId":214014,"journal":{"name":"2022 1st International Conference on Information System & Information Technology (ICISIT)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Classification Of Nutrition Deficiency In Rice Plant Using CNN\",\"authors\":\"S. Rizal, N. K. C. Pratiwi, N. Ibrahim, Nathaniel Syalomta, Muhammad Ikhwan Khalid Nasution, Indah Mutiah Utami Mz, Deva Aulia Putri Oktavia\",\"doi\":\"10.1109/ICISIT54091.2022.9873082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nutrient deficiency often occurs in rice plants, thus affecting the level of production and quality of rice. Nutrient deficiency, in general, can be seen from the color and shape of sick leaves; therefore, it can be detected early to reduce the symptoms of nutritional deficiency in rice plants. This study classifies the symptoms of nutritional deficiency in rice plants using the Convolutional Neural Network (CNN) with ResNet 50 and ResNet 152 architectures. There are 1156 images with datasets sourced from Kaggle, divided into nitrogen (N) deficiency and Phosphorus(P) deficiency. And Potassium (K) deficiency. The dataset augmentation process used oversampling techniques to balance the data. The best results were obtained from the ResNet 50 architecture with accuracy and validation values yielding 98% and testing values 97%\",\"PeriodicalId\":214014,\"journal\":{\"name\":\"2022 1st International Conference on Information System & Information Technology (ICISIT)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 1st International Conference on Information System & Information Technology (ICISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISIT54091.2022.9873082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 1st International Conference on Information System & Information Technology (ICISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIT54091.2022.9873082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

水稻植株经常发生营养缺乏,从而影响水稻的生产水平和品质。营养缺乏,一般可以从病叶的颜色和形状看出;因此,可以及早发现,减轻水稻植株营养缺乏的症状。本研究利用卷积神经网络(CNN)与ResNet 50和ResNet 152架构对水稻植株营养缺乏症状进行分类。来自Kaggle的数据集有1156幅图像,分为氮(N)缺乏和磷(P)缺乏。钾(K)缺乏。数据集扩充过程使用过采样技术来平衡数据。在ResNet 50体系结构中获得了最好的结果,准确率和验证值为98%,测试值为97%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification Of Nutrition Deficiency In Rice Plant Using CNN
Nutrient deficiency often occurs in rice plants, thus affecting the level of production and quality of rice. Nutrient deficiency, in general, can be seen from the color and shape of sick leaves; therefore, it can be detected early to reduce the symptoms of nutritional deficiency in rice plants. This study classifies the symptoms of nutritional deficiency in rice plants using the Convolutional Neural Network (CNN) with ResNet 50 and ResNet 152 architectures. There are 1156 images with datasets sourced from Kaggle, divided into nitrogen (N) deficiency and Phosphorus(P) deficiency. And Potassium (K) deficiency. The dataset augmentation process used oversampling techniques to balance the data. The best results were obtained from the ResNet 50 architecture with accuracy and validation values yielding 98% and testing values 97%
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信