Nalika Ulapane, Linh V. Nguyen, J. V. Miró, G. Dissanayake
{"title":"解决逆脉冲涡流问题,实现三维剖面","authors":"Nalika Ulapane, Linh V. Nguyen, J. V. Miró, G. Dissanayake","doi":"10.1109/ICIEA.2018.8397904","DOIUrl":null,"url":null,"abstract":"When a Pulsed Eddy Current (PEC) sensor assesses a metallic surface (i.e., a wall of finite thickness), the inverse problem involves quantification of the geometry and material properties of the wall. Once a PEC sensor is calibrated for a particular material, and the material under test happens to be considerably homogeneous, the inverse problem reduces to quantification of geometry alone. The state-of-the-art in the industry produces a quantification of this geometry only in the form of average wall thickness remaining underneath the sensor footprint, and produces a 2.5D map containing wall thickness information. Therefore, this paper contributes by proposing a solution that can jointly estimate the remaining wall thickness as well as lift-off (i.e., offset from the sensor to the surface of healthy material), in order to advance PEC sensing outputs by enabling estimation of wall condition in 3D. Since PEC maps are used as inputs for stress calculation and remaining life prediction of certain infrastructure like critical pipes, 3D profiles may become a richer form of input for such applications than 2.5D maps. Since PEC sensing is commonly used to assess ferromagnetic materials, this paper focuses on similar materials as well. The solution is demonstrated in simulation alone and future work should focus on experimental implementations.","PeriodicalId":140420,"journal":{"name":"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"34 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A solution to the inverse pulsed eddy current problem enabling 3D profiling\",\"authors\":\"Nalika Ulapane, Linh V. Nguyen, J. V. Miró, G. Dissanayake\",\"doi\":\"10.1109/ICIEA.2018.8397904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When a Pulsed Eddy Current (PEC) sensor assesses a metallic surface (i.e., a wall of finite thickness), the inverse problem involves quantification of the geometry and material properties of the wall. Once a PEC sensor is calibrated for a particular material, and the material under test happens to be considerably homogeneous, the inverse problem reduces to quantification of geometry alone. The state-of-the-art in the industry produces a quantification of this geometry only in the form of average wall thickness remaining underneath the sensor footprint, and produces a 2.5D map containing wall thickness information. Therefore, this paper contributes by proposing a solution that can jointly estimate the remaining wall thickness as well as lift-off (i.e., offset from the sensor to the surface of healthy material), in order to advance PEC sensing outputs by enabling estimation of wall condition in 3D. Since PEC maps are used as inputs for stress calculation and remaining life prediction of certain infrastructure like critical pipes, 3D profiles may become a richer form of input for such applications than 2.5D maps. Since PEC sensing is commonly used to assess ferromagnetic materials, this paper focuses on similar materials as well. The solution is demonstrated in simulation alone and future work should focus on experimental implementations.\",\"PeriodicalId\":140420,\"journal\":{\"name\":\"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"34 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2018.8397904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2018.8397904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A solution to the inverse pulsed eddy current problem enabling 3D profiling
When a Pulsed Eddy Current (PEC) sensor assesses a metallic surface (i.e., a wall of finite thickness), the inverse problem involves quantification of the geometry and material properties of the wall. Once a PEC sensor is calibrated for a particular material, and the material under test happens to be considerably homogeneous, the inverse problem reduces to quantification of geometry alone. The state-of-the-art in the industry produces a quantification of this geometry only in the form of average wall thickness remaining underneath the sensor footprint, and produces a 2.5D map containing wall thickness information. Therefore, this paper contributes by proposing a solution that can jointly estimate the remaining wall thickness as well as lift-off (i.e., offset from the sensor to the surface of healthy material), in order to advance PEC sensing outputs by enabling estimation of wall condition in 3D. Since PEC maps are used as inputs for stress calculation and remaining life prediction of certain infrastructure like critical pipes, 3D profiles may become a richer form of input for such applications than 2.5D maps. Since PEC sensing is commonly used to assess ferromagnetic materials, this paper focuses on similar materials as well. The solution is demonstrated in simulation alone and future work should focus on experimental implementations.