N. Saxena, Karen Huang, Evan DeFilippis, Goran Radanovic, D. Parkes, Y. Liu
{"title":"公平的定义如何?调查公众对公平的算法定义的态度","authors":"N. Saxena, Karen Huang, Evan DeFilippis, Goran Radanovic, D. Parkes, Y. Liu","doi":"10.1145/3306618.3314248","DOIUrl":null,"url":null,"abstract":"What is the best way to define algorithmic fairness? While many definitions of fairness have been proposed in the computer science literature, there is no clear agreement over a particular definition. In this work, we investigate ordinary people's perceptions of three of these fairness definitions. Across two online experiments, we test which definitions people perceive to be the fairest in the context of loan decisions, and whether fairness perceptions change with the addition of sensitive information (i.e., race of the loan applicants). Overall, one definition (calibrated fairness) tends to be more pre- ferred than the others, and the results also provide support for the principle of affirmative action.","PeriodicalId":418125,"journal":{"name":"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"136","resultStr":"{\"title\":\"How Do Fairness Definitions Fare?: Examining Public Attitudes Towards Algorithmic Definitions of Fairness\",\"authors\":\"N. Saxena, Karen Huang, Evan DeFilippis, Goran Radanovic, D. Parkes, Y. Liu\",\"doi\":\"10.1145/3306618.3314248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"What is the best way to define algorithmic fairness? While many definitions of fairness have been proposed in the computer science literature, there is no clear agreement over a particular definition. In this work, we investigate ordinary people's perceptions of three of these fairness definitions. Across two online experiments, we test which definitions people perceive to be the fairest in the context of loan decisions, and whether fairness perceptions change with the addition of sensitive information (i.e., race of the loan applicants). Overall, one definition (calibrated fairness) tends to be more pre- ferred than the others, and the results also provide support for the principle of affirmative action.\",\"PeriodicalId\":418125,\"journal\":{\"name\":\"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"136\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3306618.3314248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3306618.3314248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How Do Fairness Definitions Fare?: Examining Public Attitudes Towards Algorithmic Definitions of Fairness
What is the best way to define algorithmic fairness? While many definitions of fairness have been proposed in the computer science literature, there is no clear agreement over a particular definition. In this work, we investigate ordinary people's perceptions of three of these fairness definitions. Across two online experiments, we test which definitions people perceive to be the fairest in the context of loan decisions, and whether fairness perceptions change with the addition of sensitive information (i.e., race of the loan applicants). Overall, one definition (calibrated fairness) tends to be more pre- ferred than the others, and the results also provide support for the principle of affirmative action.