Leticia Hernando, F. Daolio, Nadarajen Veerapen, G. Ochoa
{"title":"置换流水车间调度问题的局部最优网络:最大完工时间与总流时间","authors":"Leticia Hernando, F. Daolio, Nadarajen Veerapen, G. Ochoa","doi":"10.1109/CEC.2017.7969541","DOIUrl":null,"url":null,"abstract":"Local Optima Networks were proposed to understand the structure of combinatorial landscapes at a coarse-grained level. We consider a compressed variant of such networks with features that are meaningful for the study of search difficulty in the context of local search. In particular, we investigate different landscapes of the Permutation Flowshop Scheduling Problem. The insert and 2-exchange neighbourhoods are considered, and two different objective functions are taken into account: the makespan and the total flow time. The aim is to analyse the network features in order to find differences between the landscape structures, giving insights about which features impact algorithm performance. We evaluate the correlation between landscape properties and the performance of an Iterated Local Search algorithm. Visualisation of the network structure is also given, where evident differences between the makespan and total flow time are observed.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Local Optima Networks of the Permutation Flowshop Scheduling Problem: Makespan vs. total flow time\",\"authors\":\"Leticia Hernando, F. Daolio, Nadarajen Veerapen, G. Ochoa\",\"doi\":\"10.1109/CEC.2017.7969541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local Optima Networks were proposed to understand the structure of combinatorial landscapes at a coarse-grained level. We consider a compressed variant of such networks with features that are meaningful for the study of search difficulty in the context of local search. In particular, we investigate different landscapes of the Permutation Flowshop Scheduling Problem. The insert and 2-exchange neighbourhoods are considered, and two different objective functions are taken into account: the makespan and the total flow time. The aim is to analyse the network features in order to find differences between the landscape structures, giving insights about which features impact algorithm performance. We evaluate the correlation between landscape properties and the performance of an Iterated Local Search algorithm. Visualisation of the network structure is also given, where evident differences between the makespan and total flow time are observed.\",\"PeriodicalId\":335123,\"journal\":{\"name\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2017.7969541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Local Optima Networks of the Permutation Flowshop Scheduling Problem: Makespan vs. total flow time
Local Optima Networks were proposed to understand the structure of combinatorial landscapes at a coarse-grained level. We consider a compressed variant of such networks with features that are meaningful for the study of search difficulty in the context of local search. In particular, we investigate different landscapes of the Permutation Flowshop Scheduling Problem. The insert and 2-exchange neighbourhoods are considered, and two different objective functions are taken into account: the makespan and the total flow time. The aim is to analyse the network features in order to find differences between the landscape structures, giving insights about which features impact algorithm performance. We evaluate the correlation between landscape properties and the performance of an Iterated Local Search algorithm. Visualisation of the network structure is also given, where evident differences between the makespan and total flow time are observed.