压缩感知随机展开图的优化选择

Zhenghua Wu, Qiang Wang, Yi Shen, Jie Liu
{"title":"压缩感知随机展开图的优化选择","authors":"Zhenghua Wu, Qiang Wang, Yi Shen, Jie Liu","doi":"10.1109/ICINFA.2013.6720446","DOIUrl":null,"url":null,"abstract":"Compressive Sensing (CS) shows that sparse signals can be exactly recovered from a limited number of random or deterministic projections when the measurement mode satisfies some specified conditions. Random matrices, with the drawbacks of large storage, low efficiency and high complexity, are hard to use in practical applications. Recent works explore expander graphs for efficient CS recovery, but there is no explicit construction of expanders. The widely used expanders are chosen at random based on the probabilistic method. In this paper, we propose a parameter based on the second-largest eigenvalue of the adjacency matrix to select optimized expanders from random expanders. The theoretical analysis and the numerical simulations both indicate the selection criteria proposed in this paper can pick up the high-performance expanders from the random expanders effectively.","PeriodicalId":250844,"journal":{"name":"2013 IEEE International Conference on Information and Automation (ICIA)","volume":"35 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimized selection of random expander graphs for Compressive Sensing\",\"authors\":\"Zhenghua Wu, Qiang Wang, Yi Shen, Jie Liu\",\"doi\":\"10.1109/ICINFA.2013.6720446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive Sensing (CS) shows that sparse signals can be exactly recovered from a limited number of random or deterministic projections when the measurement mode satisfies some specified conditions. Random matrices, with the drawbacks of large storage, low efficiency and high complexity, are hard to use in practical applications. Recent works explore expander graphs for efficient CS recovery, but there is no explicit construction of expanders. The widely used expanders are chosen at random based on the probabilistic method. In this paper, we propose a parameter based on the second-largest eigenvalue of the adjacency matrix to select optimized expanders from random expanders. The theoretical analysis and the numerical simulations both indicate the selection criteria proposed in this paper can pick up the high-performance expanders from the random expanders effectively.\",\"PeriodicalId\":250844,\"journal\":{\"name\":\"2013 IEEE International Conference on Information and Automation (ICIA)\",\"volume\":\"35 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Information and Automation (ICIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2013.6720446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2013.6720446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

压缩感知(CS)表明,当测量模式满足一定条件时,可以从有限数量的随机或确定性投影中精确恢复稀疏信号。随机矩阵存在存储空间大、效率低、复杂度高等缺点,难以在实际应用中应用。最近的作品探讨了有效CS回收的展开图,但没有明确的展开图的构造。采用概率法随机选择常用的膨胀器。本文提出了一个基于邻接矩阵第二大特征值的参数,用于从随机展开器中选择最优展开器。理论分析和数值模拟均表明,本文提出的选择准则能够有效地从随机扩展器中挑选出高性能扩展器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized selection of random expander graphs for Compressive Sensing
Compressive Sensing (CS) shows that sparse signals can be exactly recovered from a limited number of random or deterministic projections when the measurement mode satisfies some specified conditions. Random matrices, with the drawbacks of large storage, low efficiency and high complexity, are hard to use in practical applications. Recent works explore expander graphs for efficient CS recovery, but there is no explicit construction of expanders. The widely used expanders are chosen at random based on the probabilistic method. In this paper, we propose a parameter based on the second-largest eigenvalue of the adjacency matrix to select optimized expanders from random expanders. The theoretical analysis and the numerical simulations both indicate the selection criteria proposed in this paper can pick up the high-performance expanders from the random expanders effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信