线性预测的结构化最小二乘准则

A. Lopes, R. Lemos
{"title":"线性预测的结构化最小二乘准则","authors":"A. Lopes, R. Lemos","doi":"10.1109/ITS.1998.713091","DOIUrl":null,"url":null,"abstract":"Linear prediction is one of the most important tools in modern signal processing. This article is concerned with the optimization of the linear prediction coefficients through a least squares criterion taking into account the special structures of the associated data matrix. These structures are lost during the conventional least squares optimization. However better results can be achieved if they are preserved. We propose two procedures to this end and demonstrate that they are equivalent because they minimize the same objective function.","PeriodicalId":205350,"journal":{"name":"ITS'98 Proceedings. SBT/IEEE International Telecommunications Symposium (Cat. No.98EX202)","volume":"10 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structured least squares criterion for linear prediction\",\"authors\":\"A. Lopes, R. Lemos\",\"doi\":\"10.1109/ITS.1998.713091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear prediction is one of the most important tools in modern signal processing. This article is concerned with the optimization of the linear prediction coefficients through a least squares criterion taking into account the special structures of the associated data matrix. These structures are lost during the conventional least squares optimization. However better results can be achieved if they are preserved. We propose two procedures to this end and demonstrate that they are equivalent because they minimize the same objective function.\",\"PeriodicalId\":205350,\"journal\":{\"name\":\"ITS'98 Proceedings. SBT/IEEE International Telecommunications Symposium (Cat. No.98EX202)\",\"volume\":\"10 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ITS'98 Proceedings. SBT/IEEE International Telecommunications Symposium (Cat. No.98EX202)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITS.1998.713091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITS'98 Proceedings. SBT/IEEE International Telecommunications Symposium (Cat. No.98EX202)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.1998.713091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

线性预测是现代信号处理的重要工具之一。本文考虑到相关数据矩阵的特殊结构,通过最小二乘准则对线性预测系数进行优化。这些结构在传统的最小二乘优化中会丢失。然而,如果保存它们,可以取得更好的结果。我们为此提出了两个程序,并证明它们是等效的,因为它们最小化相同的目标函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structured least squares criterion for linear prediction
Linear prediction is one of the most important tools in modern signal processing. This article is concerned with the optimization of the linear prediction coefficients through a least squares criterion taking into account the special structures of the associated data matrix. These structures are lost during the conventional least squares optimization. However better results can be achieved if they are preserved. We propose two procedures to this end and demonstrate that they are equivalent because they minimize the same objective function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信