{"title":"图像分割与传播马尔可夫网格模型","authors":"Carola Fassnacht, P. Devijver","doi":"10.1109/ICPR.1994.576338","DOIUrl":null,"url":null,"abstract":"We introduce the concept of a propagator function to characterize unilateral Markov fields that fulfil the positivity condition. We show that parameter estimation of a model realization corresponds to the solution of a given set of equations, which can be solved explicitly for a specific propagator function depending exclusively on identities among site labels. For a hidden model, we propose a nonsupervised, iterative scheme comprising labeling and parameter re-estimation steps. Segmentation experiments using a third order Markov mesh, together with a look-ahead algorithm for real-time label estimation, show rapid convergence of the learning algorithm and yield subjectively good results.","PeriodicalId":312019,"journal":{"name":"Proceedings of 12th International Conference on Pattern Recognition","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Image segmentation with a propagator Markov mesh model\",\"authors\":\"Carola Fassnacht, P. Devijver\",\"doi\":\"10.1109/ICPR.1994.576338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the concept of a propagator function to characterize unilateral Markov fields that fulfil the positivity condition. We show that parameter estimation of a model realization corresponds to the solution of a given set of equations, which can be solved explicitly for a specific propagator function depending exclusively on identities among site labels. For a hidden model, we propose a nonsupervised, iterative scheme comprising labeling and parameter re-estimation steps. Segmentation experiments using a third order Markov mesh, together with a look-ahead algorithm for real-time label estimation, show rapid convergence of the learning algorithm and yield subjectively good results.\",\"PeriodicalId\":312019,\"journal\":{\"name\":\"Proceedings of 12th International Conference on Pattern Recognition\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 12th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1994.576338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 12th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1994.576338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image segmentation with a propagator Markov mesh model
We introduce the concept of a propagator function to characterize unilateral Markov fields that fulfil the positivity condition. We show that parameter estimation of a model realization corresponds to the solution of a given set of equations, which can be solved explicitly for a specific propagator function depending exclusively on identities among site labels. For a hidden model, we propose a nonsupervised, iterative scheme comprising labeling and parameter re-estimation steps. Segmentation experiments using a third order Markov mesh, together with a look-ahead algorithm for real-time label estimation, show rapid convergence of the learning algorithm and yield subjectively good results.