图像分割与传播马尔可夫网格模型

Carola Fassnacht, P. Devijver
{"title":"图像分割与传播马尔可夫网格模型","authors":"Carola Fassnacht, P. Devijver","doi":"10.1109/ICPR.1994.576338","DOIUrl":null,"url":null,"abstract":"We introduce the concept of a propagator function to characterize unilateral Markov fields that fulfil the positivity condition. We show that parameter estimation of a model realization corresponds to the solution of a given set of equations, which can be solved explicitly for a specific propagator function depending exclusively on identities among site labels. For a hidden model, we propose a nonsupervised, iterative scheme comprising labeling and parameter re-estimation steps. Segmentation experiments using a third order Markov mesh, together with a look-ahead algorithm for real-time label estimation, show rapid convergence of the learning algorithm and yield subjectively good results.","PeriodicalId":312019,"journal":{"name":"Proceedings of 12th International Conference on Pattern Recognition","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Image segmentation with a propagator Markov mesh model\",\"authors\":\"Carola Fassnacht, P. Devijver\",\"doi\":\"10.1109/ICPR.1994.576338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the concept of a propagator function to characterize unilateral Markov fields that fulfil the positivity condition. We show that parameter estimation of a model realization corresponds to the solution of a given set of equations, which can be solved explicitly for a specific propagator function depending exclusively on identities among site labels. For a hidden model, we propose a nonsupervised, iterative scheme comprising labeling and parameter re-estimation steps. Segmentation experiments using a third order Markov mesh, together with a look-ahead algorithm for real-time label estimation, show rapid convergence of the learning algorithm and yield subjectively good results.\",\"PeriodicalId\":312019,\"journal\":{\"name\":\"Proceedings of 12th International Conference on Pattern Recognition\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 12th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1994.576338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 12th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1994.576338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们引入传播函数的概念来描述满足正条件的单侧马尔可夫场。我们证明了模型实现的参数估计对应于一组给定方程的解,这组方程可以对特定的传播函数显式地求解,仅依赖于站点标签之间的恒等式。对于隐藏模型,我们提出了一种包含标记和参数重估计步骤的无监督迭代方案。使用三阶马尔可夫网格进行分割实验,并结合前瞻性算法进行实时标签估计,表明学习算法收敛速度快,主观上取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image segmentation with a propagator Markov mesh model
We introduce the concept of a propagator function to characterize unilateral Markov fields that fulfil the positivity condition. We show that parameter estimation of a model realization corresponds to the solution of a given set of equations, which can be solved explicitly for a specific propagator function depending exclusively on identities among site labels. For a hidden model, we propose a nonsupervised, iterative scheme comprising labeling and parameter re-estimation steps. Segmentation experiments using a third order Markov mesh, together with a look-ahead algorithm for real-time label estimation, show rapid convergence of the learning algorithm and yield subjectively good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信