一种新的仿射投影算法误差减小方法

S. Koike
{"title":"一种新的仿射投影算法误差减小方法","authors":"S. Koike","doi":"10.1109/CIT.2017.18","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method of reducing the steady-state error for the Affine Projection Algorithm (APA) using Error Reduction Factor (ERF) to yield Error Reduction Affine Projection Algorithm (ER-APA). The proposed method is very simple but highly effective. In the paper, we analyze the ER-APA for calculating theoretical filter convergence. Through experiments, it is shown that the ER-APA sufficiently reduces the steady-state error for any value of the dimension of projection, while preserving the fast convergence property of the APA.","PeriodicalId":378423,"journal":{"name":"2017 IEEE International Conference on Computer and Information Technology (CIT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Method of Error Reduction for Affine Projection Algorithm\",\"authors\":\"S. Koike\",\"doi\":\"10.1109/CIT.2017.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new method of reducing the steady-state error for the Affine Projection Algorithm (APA) using Error Reduction Factor (ERF) to yield Error Reduction Affine Projection Algorithm (ER-APA). The proposed method is very simple but highly effective. In the paper, we analyze the ER-APA for calculating theoretical filter convergence. Through experiments, it is shown that the ER-APA sufficiently reduces the steady-state error for any value of the dimension of projection, while preserving the fast convergence property of the APA.\",\"PeriodicalId\":378423,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer and Information Technology (CIT)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer and Information Technology (CIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIT.2017.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer and Information Technology (CIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIT.2017.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用误差缩减因子(ERF)减小仿射投影算法稳态误差的新方法,从而得到误差缩减仿射投影算法(ER-APA)。该方法简单有效。本文分析了计算理论滤波器收敛性的ER-APA。实验结果表明,该算法在保持其快速收敛特性的同时,充分减小了投影维数任意值的稳态误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Method of Error Reduction for Affine Projection Algorithm
This paper proposes a new method of reducing the steady-state error for the Affine Projection Algorithm (APA) using Error Reduction Factor (ERF) to yield Error Reduction Affine Projection Algorithm (ER-APA). The proposed method is very simple but highly effective. In the paper, we analyze the ER-APA for calculating theoretical filter convergence. Through experiments, it is shown that the ER-APA sufficiently reduces the steady-state error for any value of the dimension of projection, while preserving the fast convergence property of the APA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信