用于核外量子计算模拟的块张量代数库

Sergio Sánchez Ramírez, Javier Conejero, F. Lordan, A. Queralt, Toni Cortes, R. Badia, A. García-Sáez
{"title":"用于核外量子计算模拟的块张量代数库","authors":"Sergio Sánchez Ramírez, Javier Conejero, F. Lordan, A. Queralt, Toni Cortes, R. Badia, A. García-Sáez","doi":"10.1109/QCS54837.2021.00004","DOIUrl":null,"url":null,"abstract":"With the advent of more powerful Quantum Computers, the need for larger Quantum Simulations has boosted. As the amount of resources grows exponentially with size of the target system Tensor Networks emerge as an optimal framework with which we represent Quantum States in tensor factorizations. As the extent of a tensor network increases, so does the size of intermediate tensors requiring HPC tools for their manipulation. Simulations of medium-sized circuits cannot fit on local memory, and solutions for distributed contraction of tensors are scarce. In this work we present RosneT, a library for distributed, out-of-core block tensor algebra. We use the PyCOMPSs programming model to transform tensor operations into a collection of tasks handled by the COMPSs runtime, targeting executions in existing and upcoming Exascale supercomputers. We report results validating our approach showing good scalability in simulations of Quantum circuits of up to 53 qubits.","PeriodicalId":432600,"journal":{"name":"2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RosneT: A Block Tensor Algebra Library for Out-of-Core Quantum Computing Simulation\",\"authors\":\"Sergio Sánchez Ramírez, Javier Conejero, F. Lordan, A. Queralt, Toni Cortes, R. Badia, A. García-Sáez\",\"doi\":\"10.1109/QCS54837.2021.00004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of more powerful Quantum Computers, the need for larger Quantum Simulations has boosted. As the amount of resources grows exponentially with size of the target system Tensor Networks emerge as an optimal framework with which we represent Quantum States in tensor factorizations. As the extent of a tensor network increases, so does the size of intermediate tensors requiring HPC tools for their manipulation. Simulations of medium-sized circuits cannot fit on local memory, and solutions for distributed contraction of tensors are scarce. In this work we present RosneT, a library for distributed, out-of-core block tensor algebra. We use the PyCOMPSs programming model to transform tensor operations into a collection of tasks handled by the COMPSs runtime, targeting executions in existing and upcoming Exascale supercomputers. We report results validating our approach showing good scalability in simulations of Quantum circuits of up to 53 qubits.\",\"PeriodicalId\":432600,\"journal\":{\"name\":\"2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QCS54837.2021.00004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QCS54837.2021.00004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着更强大的量子计算机的出现,对更大的量子模拟的需求也在增加。当资源的数量随着目标系统的大小呈指数级增长时,张量网络成为我们在张量分解中表示量子态的最佳框架。随着张量网络的扩展,需要HPC工具来操作的中间张量的大小也在增加。中型电路的模拟无法在局部存储器中进行,而且张量分布收缩的解也很少。在这项工作中,我们提出了RosneT,一个分布式的,核外块张量代数库。我们使用pycomps编程模型将张量操作转换为由comps运行时处理的任务集合,目标是在现有和即将推出的Exascale超级计算机中执行。我们报告的结果验证了我们的方法在高达53量子位的量子电路模拟中显示出良好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RosneT: A Block Tensor Algebra Library for Out-of-Core Quantum Computing Simulation
With the advent of more powerful Quantum Computers, the need for larger Quantum Simulations has boosted. As the amount of resources grows exponentially with size of the target system Tensor Networks emerge as an optimal framework with which we represent Quantum States in tensor factorizations. As the extent of a tensor network increases, so does the size of intermediate tensors requiring HPC tools for their manipulation. Simulations of medium-sized circuits cannot fit on local memory, and solutions for distributed contraction of tensors are scarce. In this work we present RosneT, a library for distributed, out-of-core block tensor algebra. We use the PyCOMPSs programming model to transform tensor operations into a collection of tasks handled by the COMPSs runtime, targeting executions in existing and upcoming Exascale supercomputers. We report results validating our approach showing good scalability in simulations of Quantum circuits of up to 53 qubits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信