光子神经网格中的贝叶斯训练

C. Mesaritakis, G. Sarantoglou, S. Theodoridis, A. Bogris
{"title":"光子神经网格中的贝叶斯训练","authors":"C. Mesaritakis, G. Sarantoglou, S. Theodoridis, A. Bogris","doi":"10.1109/COMPENG50184.2022.9905470","DOIUrl":null,"url":null,"abstract":"Neural networks based on reconfigurable photonic integrated chips (RPICs) can offer zero-latency processing, marginal power consumption and operational flexibility. On the other hand, they are subject to, performance affecting, operational/fabrication deviations in their building blocks. Here, we present a Bayesian learning framework that when combined with device characterization, can dramatically decrease power consumption beyond 74% and significantly simplify the driving circuitry.","PeriodicalId":211056,"journal":{"name":"2022 IEEE Workshop on Complexity in Engineering (COMPENG)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Training in Photonic Neural Meshes\",\"authors\":\"C. Mesaritakis, G. Sarantoglou, S. Theodoridis, A. Bogris\",\"doi\":\"10.1109/COMPENG50184.2022.9905470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks based on reconfigurable photonic integrated chips (RPICs) can offer zero-latency processing, marginal power consumption and operational flexibility. On the other hand, they are subject to, performance affecting, operational/fabrication deviations in their building blocks. Here, we present a Bayesian learning framework that when combined with device characterization, can dramatically decrease power consumption beyond 74% and significantly simplify the driving circuitry.\",\"PeriodicalId\":211056,\"journal\":{\"name\":\"2022 IEEE Workshop on Complexity in Engineering (COMPENG)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Workshop on Complexity in Engineering (COMPENG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPENG50184.2022.9905470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Workshop on Complexity in Engineering (COMPENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPENG50184.2022.9905470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于可重构光子集成芯片(rpic)的神经网络具有零延迟处理、边际功耗和操作灵活性等优点。另一方面,它们在构建块中受到性能影响的操作/制造偏差的影响。在这里,我们提出了一个贝叶斯学习框架,当与器件特性相结合时,可以显着降低功耗超过74%,并显着简化驱动电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Training in Photonic Neural Meshes
Neural networks based on reconfigurable photonic integrated chips (RPICs) can offer zero-latency processing, marginal power consumption and operational flexibility. On the other hand, they are subject to, performance affecting, operational/fabrication deviations in their building blocks. Here, we present a Bayesian learning framework that when combined with device characterization, can dramatically decrease power consumption beyond 74% and significantly simplify the driving circuitry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信