一般图的加权匹配缩放算法

H. Gabow
{"title":"一般图的加权匹配缩放算法","authors":"H. Gabow","doi":"10.1109/SFCS.1985.3","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for maximum matching on general graphs with integral edge weights, running in time O(n3/4m lg N), where n, m and N are the number of vertices, number of edges, and largest edge weight magnitude, respectively. The best previous bound is O(n(mlg lg lgd n + n lg n)) where d is the density of the graph. The algorithm finds augmenting paths in batches by scaling the weights. The algorithm extends to degree-constrained subgraphs and hence to shortest paths on undirected graphs, the Chinese postman problem and finding a maximum cut of a planar graph. It speeds up Christofides' travelling salesman approximation algorithm from O(n3) to O(n2.75 lg n). A list splitting problem that arises in Edmonds' matching algorithm is solved in O(mα(m,n)) time, where m is the number of operations on a universe of n elements; the list splitting algorithm does not use set merging. Applications are given to update problems for red-green matching, the cardinality Chinese postman problem and the maximum cardinality plane cut problem; also to the all-pairs shortest paths problem on undirected graphs with lengths plus or minus one.","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"A scaling algorithm for weighted matching on general graphs\",\"authors\":\"H. Gabow\",\"doi\":\"10.1109/SFCS.1985.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm for maximum matching on general graphs with integral edge weights, running in time O(n3/4m lg N), where n, m and N are the number of vertices, number of edges, and largest edge weight magnitude, respectively. The best previous bound is O(n(mlg lg lgd n + n lg n)) where d is the density of the graph. The algorithm finds augmenting paths in batches by scaling the weights. The algorithm extends to degree-constrained subgraphs and hence to shortest paths on undirected graphs, the Chinese postman problem and finding a maximum cut of a planar graph. It speeds up Christofides' travelling salesman approximation algorithm from O(n3) to O(n2.75 lg n). A list splitting problem that arises in Edmonds' matching algorithm is solved in O(mα(m,n)) time, where m is the number of operations on a universe of n elements; the list splitting algorithm does not use set merging. Applications are given to update problems for red-green matching, the cardinality Chinese postman problem and the maximum cardinality plane cut problem; also to the all-pairs shortest paths problem on undirected graphs with lengths plus or minus one.\",\"PeriodicalId\":296739,\"journal\":{\"name\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"volume\":\"282 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1985.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1985.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

摘要

本文提出了一种具有积分边权的一般图的最大匹配算法,运行时间为O(n3/4m lg N),其中N为顶点数,m为边数,N为最大边权大小。最好的上界是O(n(mlglglglgn + nlgn))其中d是图的密度。该算法通过缩放权重来批量查找扩增路径。该算法扩展到度约束子图,进而扩展到无向图上的最短路径、中国邮差问题和寻找平面图的最大切。它将Christofides的旅行推销员近似算法从O(n3)加速到O(n2.75 lgn)。Edmonds匹配算法中出现的列表分裂问题在O(mα(m,n))时间内得到解决,其中m是在n个元素的全域上的操作次数;列表分割算法不使用集合合并。应用于更新红绿匹配问题、基数中国邮差问题和最大基数平面切割问题;对于长度为正负1的无向图上的全对最短路径问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A scaling algorithm for weighted matching on general graphs
This paper presents an algorithm for maximum matching on general graphs with integral edge weights, running in time O(n3/4m lg N), where n, m and N are the number of vertices, number of edges, and largest edge weight magnitude, respectively. The best previous bound is O(n(mlg lg lgd n + n lg n)) where d is the density of the graph. The algorithm finds augmenting paths in batches by scaling the weights. The algorithm extends to degree-constrained subgraphs and hence to shortest paths on undirected graphs, the Chinese postman problem and finding a maximum cut of a planar graph. It speeds up Christofides' travelling salesman approximation algorithm from O(n3) to O(n2.75 lg n). A list splitting problem that arises in Edmonds' matching algorithm is solved in O(mα(m,n)) time, where m is the number of operations on a universe of n elements; the list splitting algorithm does not use set merging. Applications are given to update problems for red-green matching, the cardinality Chinese postman problem and the maximum cardinality plane cut problem; also to the all-pairs shortest paths problem on undirected graphs with lengths plus or minus one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信