{"title":"一般图的加权匹配缩放算法","authors":"H. Gabow","doi":"10.1109/SFCS.1985.3","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for maximum matching on general graphs with integral edge weights, running in time O(n3/4m lg N), where n, m and N are the number of vertices, number of edges, and largest edge weight magnitude, respectively. The best previous bound is O(n(mlg lg lgd n + n lg n)) where d is the density of the graph. The algorithm finds augmenting paths in batches by scaling the weights. The algorithm extends to degree-constrained subgraphs and hence to shortest paths on undirected graphs, the Chinese postman problem and finding a maximum cut of a planar graph. It speeds up Christofides' travelling salesman approximation algorithm from O(n3) to O(n2.75 lg n). A list splitting problem that arises in Edmonds' matching algorithm is solved in O(mα(m,n)) time, where m is the number of operations on a universe of n elements; the list splitting algorithm does not use set merging. Applications are given to update problems for red-green matching, the cardinality Chinese postman problem and the maximum cardinality plane cut problem; also to the all-pairs shortest paths problem on undirected graphs with lengths plus or minus one.","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"A scaling algorithm for weighted matching on general graphs\",\"authors\":\"H. Gabow\",\"doi\":\"10.1109/SFCS.1985.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm for maximum matching on general graphs with integral edge weights, running in time O(n3/4m lg N), where n, m and N are the number of vertices, number of edges, and largest edge weight magnitude, respectively. The best previous bound is O(n(mlg lg lgd n + n lg n)) where d is the density of the graph. The algorithm finds augmenting paths in batches by scaling the weights. The algorithm extends to degree-constrained subgraphs and hence to shortest paths on undirected graphs, the Chinese postman problem and finding a maximum cut of a planar graph. It speeds up Christofides' travelling salesman approximation algorithm from O(n3) to O(n2.75 lg n). A list splitting problem that arises in Edmonds' matching algorithm is solved in O(mα(m,n)) time, where m is the number of operations on a universe of n elements; the list splitting algorithm does not use set merging. Applications are given to update problems for red-green matching, the cardinality Chinese postman problem and the maximum cardinality plane cut problem; also to the all-pairs shortest paths problem on undirected graphs with lengths plus or minus one.\",\"PeriodicalId\":296739,\"journal\":{\"name\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"volume\":\"282 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1985.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1985.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111
摘要
本文提出了一种具有积分边权的一般图的最大匹配算法,运行时间为O(n3/4m lg N),其中N为顶点数,m为边数,N为最大边权大小。最好的上界是O(n(mlglglglgn + nlgn))其中d是图的密度。该算法通过缩放权重来批量查找扩增路径。该算法扩展到度约束子图,进而扩展到无向图上的最短路径、中国邮差问题和寻找平面图的最大切。它将Christofides的旅行推销员近似算法从O(n3)加速到O(n2.75 lgn)。Edmonds匹配算法中出现的列表分裂问题在O(mα(m,n))时间内得到解决,其中m是在n个元素的全域上的操作次数;列表分割算法不使用集合合并。应用于更新红绿匹配问题、基数中国邮差问题和最大基数平面切割问题;对于长度为正负1的无向图上的全对最短路径问题。
A scaling algorithm for weighted matching on general graphs
This paper presents an algorithm for maximum matching on general graphs with integral edge weights, running in time O(n3/4m lg N), where n, m and N are the number of vertices, number of edges, and largest edge weight magnitude, respectively. The best previous bound is O(n(mlg lg lgd n + n lg n)) where d is the density of the graph. The algorithm finds augmenting paths in batches by scaling the weights. The algorithm extends to degree-constrained subgraphs and hence to shortest paths on undirected graphs, the Chinese postman problem and finding a maximum cut of a planar graph. It speeds up Christofides' travelling salesman approximation algorithm from O(n3) to O(n2.75 lg n). A list splitting problem that arises in Edmonds' matching algorithm is solved in O(mα(m,n)) time, where m is the number of operations on a universe of n elements; the list splitting algorithm does not use set merging. Applications are given to update problems for red-green matching, the cardinality Chinese postman problem and the maximum cardinality plane cut problem; also to the all-pairs shortest paths problem on undirected graphs with lengths plus or minus one.