{"title":"有机磷农药双硫磷的毒性研究","authors":"Dina Satriawan, Wibi Sindjaja, Timmy Richardo","doi":"10.54250/ijls.v1i2.26","DOIUrl":null,"url":null,"abstract":"Dengue is a major public health problem in tropical urban areas, not only because it can quickly progress from the mild dengue fever to the deadly dengue hemorrhagic fever, but also because there is no single cure or licensed vaccine available to this day. To control the disease, the World Health Organization has recommended insecticides to control the number of mosquito vectors Aedes aegypti and Aedes albopictus. One of the main insecticides used is temephos, which inhibits the progression of the mosquito life cycle at the larvae stadium. Temephos is a member of the organophosphorus group of insecticides which is known to exhibit neurotoxicity through a common cholinergic pathway to insects and mammals. Despite its possible toxicity towards humans and other non-target organisms, temephos has been used widely to treat household water, including drinking-water and bath-water. Although clinical studies have yet shown any detrimental effects due to chronic consumption of temephos, studies on animal models have shown neurodevelopmental toxicity, while at the molecular level, exposure to tempehos has demonstrated genotoxic effects. Temephos is also considered an environmental contaminant and accumulation in soil and water have caused toxicity towards water organisms. Considering the extensive and repeated usage of temephos in public health, understanding and confirming the safety of temephos towards human health is crucial. Therefore, the objective of this paper is to review the current body of work available on the toxicity of temephos as a common dengue vector control.","PeriodicalId":375737,"journal":{"name":"Indonesian Journal of Life Sciences | ISSN: 2656-0682 (online)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Toxicity of the Organophosphorus Pesticide Temephos\",\"authors\":\"Dina Satriawan, Wibi Sindjaja, Timmy Richardo\",\"doi\":\"10.54250/ijls.v1i2.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dengue is a major public health problem in tropical urban areas, not only because it can quickly progress from the mild dengue fever to the deadly dengue hemorrhagic fever, but also because there is no single cure or licensed vaccine available to this day. To control the disease, the World Health Organization has recommended insecticides to control the number of mosquito vectors Aedes aegypti and Aedes albopictus. One of the main insecticides used is temephos, which inhibits the progression of the mosquito life cycle at the larvae stadium. Temephos is a member of the organophosphorus group of insecticides which is known to exhibit neurotoxicity through a common cholinergic pathway to insects and mammals. Despite its possible toxicity towards humans and other non-target organisms, temephos has been used widely to treat household water, including drinking-water and bath-water. Although clinical studies have yet shown any detrimental effects due to chronic consumption of temephos, studies on animal models have shown neurodevelopmental toxicity, while at the molecular level, exposure to tempehos has demonstrated genotoxic effects. Temephos is also considered an environmental contaminant and accumulation in soil and water have caused toxicity towards water organisms. Considering the extensive and repeated usage of temephos in public health, understanding and confirming the safety of temephos towards human health is crucial. Therefore, the objective of this paper is to review the current body of work available on the toxicity of temephos as a common dengue vector control.\",\"PeriodicalId\":375737,\"journal\":{\"name\":\"Indonesian Journal of Life Sciences | ISSN: 2656-0682 (online)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Life Sciences | ISSN: 2656-0682 (online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54250/ijls.v1i2.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Life Sciences | ISSN: 2656-0682 (online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54250/ijls.v1i2.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toxicity of the Organophosphorus Pesticide Temephos
Dengue is a major public health problem in tropical urban areas, not only because it can quickly progress from the mild dengue fever to the deadly dengue hemorrhagic fever, but also because there is no single cure or licensed vaccine available to this day. To control the disease, the World Health Organization has recommended insecticides to control the number of mosquito vectors Aedes aegypti and Aedes albopictus. One of the main insecticides used is temephos, which inhibits the progression of the mosquito life cycle at the larvae stadium. Temephos is a member of the organophosphorus group of insecticides which is known to exhibit neurotoxicity through a common cholinergic pathway to insects and mammals. Despite its possible toxicity towards humans and other non-target organisms, temephos has been used widely to treat household water, including drinking-water and bath-water. Although clinical studies have yet shown any detrimental effects due to chronic consumption of temephos, studies on animal models have shown neurodevelopmental toxicity, while at the molecular level, exposure to tempehos has demonstrated genotoxic effects. Temephos is also considered an environmental contaminant and accumulation in soil and water have caused toxicity towards water organisms. Considering the extensive and repeated usage of temephos in public health, understanding and confirming the safety of temephos towards human health is crucial. Therefore, the objective of this paper is to review the current body of work available on the toxicity of temephos as a common dengue vector control.