未来的图像帧生成使用人工神经网络选定的特征

N. Verma
{"title":"未来的图像帧生成使用人工神经网络选定的特征","authors":"N. Verma","doi":"10.1109/AIPR.2012.6528189","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for the generation of Future image frames using Artificial Neural Network (ANN) on spatiotemporal framework. The input to this network are hyper-dimensional color and spatiotemporal features of every pixel of an image in an image sequence. Principal Component Analysis, Mutual Information, Interaction Information and Bhattacharyya Distance measure based feature selection techniques have been used to reduce the dimensionality of the feature set. The pixel values of an image frame are predicted using a simple ANN back propagation algorithm. The ANN network is trained for R, G and B values for each and every pixel in an image frame. The resulting model is successfully applied on an image sequence of a landing fighter plane. As Mentioned above four feature selection techniques are used to compare the performance of the proposed ANN model. The quality of the generated future image frames is assessed using, Canny edge detection based Image Comparison Metric(CIM) and Mean Structural Similarity Index Measure(MSSIM) image quality measures. The proposed approach is found to have generated six future image frames successfully with acceptable quality of images.","PeriodicalId":406942,"journal":{"name":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Future image frame generation using Artificial Neural Network with selected features\",\"authors\":\"N. Verma\",\"doi\":\"10.1109/AIPR.2012.6528189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach for the generation of Future image frames using Artificial Neural Network (ANN) on spatiotemporal framework. The input to this network are hyper-dimensional color and spatiotemporal features of every pixel of an image in an image sequence. Principal Component Analysis, Mutual Information, Interaction Information and Bhattacharyya Distance measure based feature selection techniques have been used to reduce the dimensionality of the feature set. The pixel values of an image frame are predicted using a simple ANN back propagation algorithm. The ANN network is trained for R, G and B values for each and every pixel in an image frame. The resulting model is successfully applied on an image sequence of a landing fighter plane. As Mentioned above four feature selection techniques are used to compare the performance of the proposed ANN model. The quality of the generated future image frames is assessed using, Canny edge detection based Image Comparison Metric(CIM) and Mean Structural Similarity Index Measure(MSSIM) image quality measures. The proposed approach is found to have generated six future image frames successfully with acceptable quality of images.\",\"PeriodicalId\":406942,\"journal\":{\"name\":\"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2012.6528189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2012.6528189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种基于时空框架的人工神经网络生成未来图像帧的新方法。该网络的输入是图像序列中每个图像像素的超维颜色和时空特征。基于主成分分析、互信息、交互信息和Bhattacharyya距离测度的特征选择技术被用来降低特征集的维数。使用简单的人工神经网络反向传播算法预测图像帧的像素值。人工神经网络对图像帧中每个像素的R、G和B值进行训练。该模型成功地应用于某型战斗机着陆图像序列。如上所述,使用了四种特征选择技术来比较所提出的人工神经网络模型的性能。使用基于Canny边缘检测的图像比较度量(CIM)和平均结构相似指数度量(MSSIM)图像质量度量来评估生成的未来图像帧的质量。该方法成功地生成了六个未来的图像帧,并且图像质量可以接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Future image frame generation using Artificial Neural Network with selected features
This paper presents a novel approach for the generation of Future image frames using Artificial Neural Network (ANN) on spatiotemporal framework. The input to this network are hyper-dimensional color and spatiotemporal features of every pixel of an image in an image sequence. Principal Component Analysis, Mutual Information, Interaction Information and Bhattacharyya Distance measure based feature selection techniques have been used to reduce the dimensionality of the feature set. The pixel values of an image frame are predicted using a simple ANN back propagation algorithm. The ANN network is trained for R, G and B values for each and every pixel in an image frame. The resulting model is successfully applied on an image sequence of a landing fighter plane. As Mentioned above four feature selection techniques are used to compare the performance of the proposed ANN model. The quality of the generated future image frames is assessed using, Canny edge detection based Image Comparison Metric(CIM) and Mean Structural Similarity Index Measure(MSSIM) image quality measures. The proposed approach is found to have generated six future image frames successfully with acceptable quality of images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信