大型系统实践中的代码覆盖分析

Yoram Adler, N. Behar, O. Raz, O. Shehory, Nadav Steindler, S. Ur, Aviad Zlotnick
{"title":"大型系统实践中的代码覆盖分析","authors":"Yoram Adler, N. Behar, O. Raz, O. Shehory, Nadav Steindler, S. Ur, Aviad Zlotnick","doi":"10.1145/1985793.1985897","DOIUrl":null,"url":null,"abstract":"Large systems generate immense quantities of code coverage data. A user faced with the task of analyzing this data, for example, to decide on test areas to improve, faces a 'needle in a haystack' problem. In earlier studies we introduced substring hole analysis, a technique for presenting large quantities of coverage data in a succinct way. Here we demonstrate the successful use of substring hole analysis on large scale data from industrial software systems. For this end we augment substring hole analysis by introducing a work flow and tool support for practical code coverage analysis. We conduct real data experiments indicating that augmented substring hole analysis enables code coverage analysis where it was previously impractical, correctly identifies functionality that is missing from existing tests, and can increase the probability of finding bugs. These facilitate cost-effective code coverage analysis.","PeriodicalId":412454,"journal":{"name":"2011 33rd International Conference on Software Engineering (ICSE)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Code coverage analysis in practice for large systems\",\"authors\":\"Yoram Adler, N. Behar, O. Raz, O. Shehory, Nadav Steindler, S. Ur, Aviad Zlotnick\",\"doi\":\"10.1145/1985793.1985897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large systems generate immense quantities of code coverage data. A user faced with the task of analyzing this data, for example, to decide on test areas to improve, faces a 'needle in a haystack' problem. In earlier studies we introduced substring hole analysis, a technique for presenting large quantities of coverage data in a succinct way. Here we demonstrate the successful use of substring hole analysis on large scale data from industrial software systems. For this end we augment substring hole analysis by introducing a work flow and tool support for practical code coverage analysis. We conduct real data experiments indicating that augmented substring hole analysis enables code coverage analysis where it was previously impractical, correctly identifies functionality that is missing from existing tests, and can increase the probability of finding bugs. These facilitate cost-effective code coverage analysis.\",\"PeriodicalId\":412454,\"journal\":{\"name\":\"2011 33rd International Conference on Software Engineering (ICSE)\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 33rd International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1985793.1985897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 33rd International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1985793.1985897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

大型系统会生成大量的代码覆盖率数据。例如,用户面临着分析这些数据以决定需要改进的测试区域的任务,面临着“大海捞针”的问题。在早期的研究中,我们引入了子管柱空穴分析,这是一种以简洁的方式呈现大量覆盖数据的技术。在这里,我们展示了在工业软件系统的大规模数据上成功使用子管柱孔分析。为此,我们通过引入工作流程和工具来支持实际的代码覆盖率分析,从而增强子串漏洞分析。我们进行了真实的数据实验,表明增强的子串漏洞分析可以在以前不切实际的地方进行代码覆盖率分析,正确识别现有测试中缺失的功能,并且可以增加发现bug的可能性。这有助于进行经济有效的代码覆盖率分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Code coverage analysis in practice for large systems
Large systems generate immense quantities of code coverage data. A user faced with the task of analyzing this data, for example, to decide on test areas to improve, faces a 'needle in a haystack' problem. In earlier studies we introduced substring hole analysis, a technique for presenting large quantities of coverage data in a succinct way. Here we demonstrate the successful use of substring hole analysis on large scale data from industrial software systems. For this end we augment substring hole analysis by introducing a work flow and tool support for practical code coverage analysis. We conduct real data experiments indicating that augmented substring hole analysis enables code coverage analysis where it was previously impractical, correctly identifies functionality that is missing from existing tests, and can increase the probability of finding bugs. These facilitate cost-effective code coverage analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信