从多语种自然语言文本中学习术语概念系统

Lennart Wachowiak, Christian Lang, B. Heinisch, Dagmar Gromann
{"title":"从多语种自然语言文本中学习术语概念系统","authors":"Lennart Wachowiak, Christian Lang, B. Heinisch, Dagmar Gromann","doi":"10.4230/OASIcs.LDK.2021.22","DOIUrl":null,"url":null,"abstract":"Terminological Concept Systems (TCS) provide a means of organizing, structuring and representing domain-specific multilingual information and are important to ensure terminological consistency in many tasks, such as translation and cross-border communication. While several approaches to (semi-)automatic term extraction exist, learning their interrelations is vastly underexplored. We propose an automated method to extract terms and relations across natural languages and specialized domains. To this end, we adapt pretrained multilingual neural language models, which we evaluate on term extraction standard datasets with best performing results and a combination of relation extraction standard datasets with competitive results. Code and dataset are publicly available.2 2012 ACM Subject Classification Computing methodologies → Information extraction; Computing methodologies → Neural networks; Computing methodologies → Language resources","PeriodicalId":377119,"journal":{"name":"International Conference on Language, Data, and Knowledge","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Learning Terminological Concept Systems from Multilingual Natural Language Text\",\"authors\":\"Lennart Wachowiak, Christian Lang, B. Heinisch, Dagmar Gromann\",\"doi\":\"10.4230/OASIcs.LDK.2021.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terminological Concept Systems (TCS) provide a means of organizing, structuring and representing domain-specific multilingual information and are important to ensure terminological consistency in many tasks, such as translation and cross-border communication. While several approaches to (semi-)automatic term extraction exist, learning their interrelations is vastly underexplored. We propose an automated method to extract terms and relations across natural languages and specialized domains. To this end, we adapt pretrained multilingual neural language models, which we evaluate on term extraction standard datasets with best performing results and a combination of relation extraction standard datasets with competitive results. Code and dataset are publicly available.2 2012 ACM Subject Classification Computing methodologies → Information extraction; Computing methodologies → Neural networks; Computing methodologies → Language resources\",\"PeriodicalId\":377119,\"journal\":{\"name\":\"International Conference on Language, Data, and Knowledge\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Language, Data, and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/OASIcs.LDK.2021.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Language, Data, and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.LDK.2021.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

术语概念系统(TCS)提供了一种组织、构造和表示特定领域的多语言信息的方法,对于确保翻译和跨界交流等许多任务中的术语一致性至关重要。虽然存在几种(半)自动术语提取的方法,但对它们之间的相互关系的研究还远远不够。我们提出了一种跨自然语言和专门领域提取术语和关系的自动化方法。为此,我们采用预训练的多语言神经语言模型,在具有最佳表现结果的术语提取标准数据集和具有竞争结果的关系提取标准数据集上对其进行评估。代码和数据集是公开的。2 2012 ACM主题分类计算方法→信息提取;计算方法→神经网络;计算方法→语言资源
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Learning Terminological Concept Systems from Multilingual Natural Language Text
Terminological Concept Systems (TCS) provide a means of organizing, structuring and representing domain-specific multilingual information and are important to ensure terminological consistency in many tasks, such as translation and cross-border communication. While several approaches to (semi-)automatic term extraction exist, learning their interrelations is vastly underexplored. We propose an automated method to extract terms and relations across natural languages and specialized domains. To this end, we adapt pretrained multilingual neural language models, which we evaluate on term extraction standard datasets with best performing results and a combination of relation extraction standard datasets with competitive results. Code and dataset are publicly available.2 2012 ACM Subject Classification Computing methodologies → Information extraction; Computing methodologies → Neural networks; Computing methodologies → Language resources
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信