基于强化学习的联邦模型搜索

Dixi Yao, Lingdong Wang, Jiayu Xu, Liyao Xiang, Shuo Shao, Yingqi Chen, Yanjun Tong
{"title":"基于强化学习的联邦模型搜索","authors":"Dixi Yao, Lingdong Wang, Jiayu Xu, Liyao Xiang, Shuo Shao, Yingqi Chen, Yanjun Tong","doi":"10.1109/ICDCS51616.2021.00084","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) framework enables training over distributed datasets while keeping the data local. However, it is difficult to customize a model fitting for all unknown local data. A pre-determined model is most likely to lead to slow convergence or low accuracy, especially when the distributed data is non-i.i.d.. To resolve the issue, we propose a model searching method in the federated learning scenario, and the method automatically searches a model structure fitting for the unseen local data. We novelly design a reinforcement learning-based framework that samples and distributes sub-models to the participants and updates its model selection policy by maximizing the reward. In practice, the model search algorithm takes a long time to converge, and hence we adaptively assign sub-models to participants according to the transmission condition. We further propose delay-compensated synchronization to mitigate loss over late updates to facilitate convergence. Extensive experiments show that our federated model search algorithm produces highly accurate models efficiently, particularly on non-i.i.d. data.","PeriodicalId":222376,"journal":{"name":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Federated Model Search via Reinforcement Learning\",\"authors\":\"Dixi Yao, Lingdong Wang, Jiayu Xu, Liyao Xiang, Shuo Shao, Yingqi Chen, Yanjun Tong\",\"doi\":\"10.1109/ICDCS51616.2021.00084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated Learning (FL) framework enables training over distributed datasets while keeping the data local. However, it is difficult to customize a model fitting for all unknown local data. A pre-determined model is most likely to lead to slow convergence or low accuracy, especially when the distributed data is non-i.i.d.. To resolve the issue, we propose a model searching method in the federated learning scenario, and the method automatically searches a model structure fitting for the unseen local data. We novelly design a reinforcement learning-based framework that samples and distributes sub-models to the participants and updates its model selection policy by maximizing the reward. In practice, the model search algorithm takes a long time to converge, and hence we adaptively assign sub-models to participants according to the transmission condition. We further propose delay-compensated synchronization to mitigate loss over late updates to facilitate convergence. Extensive experiments show that our federated model search algorithm produces highly accurate models efficiently, particularly on non-i.i.d. data.\",\"PeriodicalId\":222376,\"journal\":{\"name\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS51616.2021.00084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS51616.2021.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

联邦学习(FL)框架支持在保持数据本地的同时对分布式数据集进行训练。然而,很难定制一个适合所有未知局部数据的模型。预先确定的模型很可能导致收敛速度慢或精度低,特别是当分布式数据是非id的时候。为了解决这一问题,我们提出了一种联邦学习场景下的模型搜索方法,该方法自动搜索适合不可见的局部数据的模型结构。我们新颖地设计了一个基于强化学习的框架,该框架对参与者的子模型进行采样和分配,并通过最大化奖励来更新其模型选择策略。在实际应用中,由于模型搜索算法收敛时间较长,因此我们根据传输条件自适应地为参与者分配子模型。我们进一步提出延迟补偿同步,以减轻延迟更新的损失,以促进收敛。大量的实验表明,我们的联邦模型搜索算法可以有效地生成高精度的模型,特别是在非id上。数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Federated Model Search via Reinforcement Learning
Federated Learning (FL) framework enables training over distributed datasets while keeping the data local. However, it is difficult to customize a model fitting for all unknown local data. A pre-determined model is most likely to lead to slow convergence or low accuracy, especially when the distributed data is non-i.i.d.. To resolve the issue, we propose a model searching method in the federated learning scenario, and the method automatically searches a model structure fitting for the unseen local data. We novelly design a reinforcement learning-based framework that samples and distributes sub-models to the participants and updates its model selection policy by maximizing the reward. In practice, the model search algorithm takes a long time to converge, and hence we adaptively assign sub-models to participants according to the transmission condition. We further propose delay-compensated synchronization to mitigate loss over late updates to facilitate convergence. Extensive experiments show that our federated model search algorithm produces highly accurate models efficiently, particularly on non-i.i.d. data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信