Umar Javed, Ítalo F. S. Cunha, D. Choffnes, Ethan Katz-Bassett, T. Anderson, A. Krishnamurthy
{"title":"PoiRoot:调查域间路径改变的根本原因","authors":"Umar Javed, Ítalo F. S. Cunha, D. Choffnes, Ethan Katz-Bassett, T. Anderson, A. Krishnamurthy","doi":"10.1145/2486001.2486036","DOIUrl":null,"url":null,"abstract":"Interdomain path changes occur frequently. Because routing protocols expose insufficient information to reason about all changes, the general problem of identifying the root cause remains unsolved. In this work, we design and evaluate PoiRoot, a real-time system that allows a provider to accurately isolate the root cause (the network responsible) of path changes affecting its prefixes. First, we develop a new model describing path changes and use it to provably identify the set of all potentially responsible networks. Next, we develop a recursive algorithm that accurately isolates the root cause of any path change. We observe that the algorithm requires monitoring paths that are generally not visible using standard measurement tools. To address this limitation, we combine existing measurement tools in new ways to acquire path information required for isolating the root cause of a path change. We evaluate PoiRoot on path changes obtained through controlled Internet experiments, simulations, and \"in-the-wild\" measurements. We demonstrate that PoiRoot is highly accurate, works well even with partial information, and generally narrows down the root cause to a single network or two neighboring ones. On controlled experiments PoiRoot is 100% accurate, as opposed to prior work which is accurate only 61.7% of the time.","PeriodicalId":159374,"journal":{"name":"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"PoiRoot: investigating the root cause of interdomain path changes\",\"authors\":\"Umar Javed, Ítalo F. S. Cunha, D. Choffnes, Ethan Katz-Bassett, T. Anderson, A. Krishnamurthy\",\"doi\":\"10.1145/2486001.2486036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interdomain path changes occur frequently. Because routing protocols expose insufficient information to reason about all changes, the general problem of identifying the root cause remains unsolved. In this work, we design and evaluate PoiRoot, a real-time system that allows a provider to accurately isolate the root cause (the network responsible) of path changes affecting its prefixes. First, we develop a new model describing path changes and use it to provably identify the set of all potentially responsible networks. Next, we develop a recursive algorithm that accurately isolates the root cause of any path change. We observe that the algorithm requires monitoring paths that are generally not visible using standard measurement tools. To address this limitation, we combine existing measurement tools in new ways to acquire path information required for isolating the root cause of a path change. We evaluate PoiRoot on path changes obtained through controlled Internet experiments, simulations, and \\\"in-the-wild\\\" measurements. We demonstrate that PoiRoot is highly accurate, works well even with partial information, and generally narrows down the root cause to a single network or two neighboring ones. On controlled experiments PoiRoot is 100% accurate, as opposed to prior work which is accurate only 61.7% of the time.\",\"PeriodicalId\":159374,\"journal\":{\"name\":\"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2486001.2486036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2486001.2486036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PoiRoot: investigating the root cause of interdomain path changes
Interdomain path changes occur frequently. Because routing protocols expose insufficient information to reason about all changes, the general problem of identifying the root cause remains unsolved. In this work, we design and evaluate PoiRoot, a real-time system that allows a provider to accurately isolate the root cause (the network responsible) of path changes affecting its prefixes. First, we develop a new model describing path changes and use it to provably identify the set of all potentially responsible networks. Next, we develop a recursive algorithm that accurately isolates the root cause of any path change. We observe that the algorithm requires monitoring paths that are generally not visible using standard measurement tools. To address this limitation, we combine existing measurement tools in new ways to acquire path information required for isolating the root cause of a path change. We evaluate PoiRoot on path changes obtained through controlled Internet experiments, simulations, and "in-the-wild" measurements. We demonstrate that PoiRoot is highly accurate, works well even with partial information, and generally narrows down the root cause to a single network or two neighboring ones. On controlled experiments PoiRoot is 100% accurate, as opposed to prior work which is accurate only 61.7% of the time.