实时面具检测器使用深度学习和树莓派

Ikram Ben abdel ouahab, Lotfi Elaachak, M. Bouhorma, Yasser A. Alluhaidan
{"title":"实时面具检测器使用深度学习和树莓派","authors":"Ikram Ben abdel ouahab, Lotfi Elaachak, M. Bouhorma, Yasser A. Alluhaidan","doi":"10.1109/ICDATA52997.2021.00014","DOIUrl":null,"url":null,"abstract":"Medical staffs wear face masks to prevent the spread of the disease. Nowadays, with the coronavirus pandemic everyone must wear a facemask for the same reason. When a person near to you coughs, talks, sneezes he could release germs into the air that may infect you or anyone nearby. Wearing a facemask is a part of an infection control strategy to avoid and eliminate cross-contamination. Even so, people are getting tired of wearing facemasks or they are not conscious enough of the seriousness of the actual covid19. In this paper, we propose a facemask detector based on IoT embedded devices and deep learning algorithm. Our main goal is to warn people in real-time if they are not wearing a facemask or they are not wearing it correctly. The proposed solution generates loud vocal alerts after detection disrespect of facemask wear in real-time for a fast reaction. To have the most efficient detector in real-time we tested the facemask detection model using various versions of the Raspberry Pi and NCS2. As a result, the facemask detector works perfectly on powerful devices, however its performance decrease in realtime using less powerful devices such as an old version of the Raspberry Pi.","PeriodicalId":231714,"journal":{"name":"2021 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Real-time Facemask Detector using Deep Learning and Raspberry Pi\",\"authors\":\"Ikram Ben abdel ouahab, Lotfi Elaachak, M. Bouhorma, Yasser A. Alluhaidan\",\"doi\":\"10.1109/ICDATA52997.2021.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical staffs wear face masks to prevent the spread of the disease. Nowadays, with the coronavirus pandemic everyone must wear a facemask for the same reason. When a person near to you coughs, talks, sneezes he could release germs into the air that may infect you or anyone nearby. Wearing a facemask is a part of an infection control strategy to avoid and eliminate cross-contamination. Even so, people are getting tired of wearing facemasks or they are not conscious enough of the seriousness of the actual covid19. In this paper, we propose a facemask detector based on IoT embedded devices and deep learning algorithm. Our main goal is to warn people in real-time if they are not wearing a facemask or they are not wearing it correctly. The proposed solution generates loud vocal alerts after detection disrespect of facemask wear in real-time for a fast reaction. To have the most efficient detector in real-time we tested the facemask detection model using various versions of the Raspberry Pi and NCS2. As a result, the facemask detector works perfectly on powerful devices, however its performance decrease in realtime using less powerful devices such as an old version of the Raspberry Pi.\",\"PeriodicalId\":231714,\"journal\":{\"name\":\"2021 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDATA52997.2021.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDATA52997.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

医务人员戴上口罩,防止疾病传播。如今,由于冠状病毒大流行,每个人都必须戴口罩。当你附近的人咳嗽、说话、打喷嚏时,他可能会向空气中释放细菌,感染你或附近的任何人。佩戴口罩是避免和消除交叉污染的感染控制策略的一部分。即便如此,人们还是厌倦了戴口罩,或者没有意识到实际的covid - 19的严重性。在本文中,我们提出了一种基于物联网嵌入式设备和深度学习算法的面罩检测器。我们的主要目标是实时警告人们,如果他们没有戴口罩,或者他们没有正确佩戴口罩。该解决方案在检测到不戴口罩的行为后,会实时发出响亮的声音警报,以便快速做出反应。为了获得最有效的实时检测器,我们使用不同版本的树莓派和NCS2测试了面罩检测模型。因此,面罩检测器在功能强大的设备上工作完美,但是在使用功能较弱的设备(如旧版本的树莓派)时,其性能会实时下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Facemask Detector using Deep Learning and Raspberry Pi
Medical staffs wear face masks to prevent the spread of the disease. Nowadays, with the coronavirus pandemic everyone must wear a facemask for the same reason. When a person near to you coughs, talks, sneezes he could release germs into the air that may infect you or anyone nearby. Wearing a facemask is a part of an infection control strategy to avoid and eliminate cross-contamination. Even so, people are getting tired of wearing facemasks or they are not conscious enough of the seriousness of the actual covid19. In this paper, we propose a facemask detector based on IoT embedded devices and deep learning algorithm. Our main goal is to warn people in real-time if they are not wearing a facemask or they are not wearing it correctly. The proposed solution generates loud vocal alerts after detection disrespect of facemask wear in real-time for a fast reaction. To have the most efficient detector in real-time we tested the facemask detection model using various versions of the Raspberry Pi and NCS2. As a result, the facemask detector works perfectly on powerful devices, however its performance decrease in realtime using less powerful devices such as an old version of the Raspberry Pi.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信