放大和非随机化无减速

O. Grossman, Dana Moshkovitz
{"title":"放大和非随机化无减速","authors":"O. Grossman, Dana Moshkovitz","doi":"10.1109/FOCS.2016.87","DOIUrl":null,"url":null,"abstract":"We present techniques for decreasing the error probability of randomized algorithms and for converting randomized algorithms to deterministic (nonuniform) algorithms. Unlike most existing techniques that involve repetition of the randomized algorithm and hence a slowdown, our techniques produce algorithms with a similar run-time to the original randomized algorithms. The amplification technique is related to a certain stochastic multi-armed bandit problem. The derandomization technique - which is the main contribution of this work - points to an intriguing connection between derandomization and sketching/sparsification. We demonstrate the techniques by showing algorithms for approximating free games (constraint satisfaction problems on dense bipartite graphs).","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Amplification and Derandomization without Slowdown\",\"authors\":\"O. Grossman, Dana Moshkovitz\",\"doi\":\"10.1109/FOCS.2016.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present techniques for decreasing the error probability of randomized algorithms and for converting randomized algorithms to deterministic (nonuniform) algorithms. Unlike most existing techniques that involve repetition of the randomized algorithm and hence a slowdown, our techniques produce algorithms with a similar run-time to the original randomized algorithms. The amplification technique is related to a certain stochastic multi-armed bandit problem. The derandomization technique - which is the main contribution of this work - points to an intriguing connection between derandomization and sketching/sparsification. We demonstrate the techniques by showing algorithms for approximating free games (constraint satisfaction problems on dense bipartite graphs).\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2016.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了降低随机算法的错误概率和将随机算法转换为确定性(非均匀)算法的技术。与大多数涉及重复随机算法的现有技术不同,我们的技术产生的算法具有与原始随机算法相似的运行时间。放大技术涉及到某随机多臂强盗问题。非随机化技术——这是这项工作的主要贡献——指出了非随机化与草图/稀疏化之间的有趣联系。我们通过展示近似自由博弈(密集二部图上的约束满足问题)的算法来演示该技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amplification and Derandomization without Slowdown
We present techniques for decreasing the error probability of randomized algorithms and for converting randomized algorithms to deterministic (nonuniform) algorithms. Unlike most existing techniques that involve repetition of the randomized algorithm and hence a slowdown, our techniques produce algorithms with a similar run-time to the original randomized algorithms. The amplification technique is related to a certain stochastic multi-armed bandit problem. The derandomization technique - which is the main contribution of this work - points to an intriguing connection between derandomization and sketching/sparsification. We demonstrate the techniques by showing algorithms for approximating free games (constraint satisfaction problems on dense bipartite graphs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信