Manojkumar Gudala, Zhen Xu, Zeeshan Tariq, B. Yan, Shuyu Sun
{"title":"裂缝性地热储层诱发地震活动性及裂缝活化的数值研究","authors":"Manojkumar Gudala, Zhen Xu, Zeeshan Tariq, B. Yan, Shuyu Sun","doi":"10.2118/214418-ms","DOIUrl":null,"url":null,"abstract":"\n In this study we developed mathematical model for thermo-hydro-mechanical process occurs within the geothermal reservoir with variable rock/fracture/fluid parameters. The influence of fracture network on the cold plume movement, pore pressure, changes in the rock/fracture effective stress under the same operating conditions. The injected fluid transport to extraction well from injection well within the interconnected fractures. In the same direction variation of the effective stress, pore pressure both in rock matrix and fractures was observed. Due to the variation of effective stress in the fracture, it will undergo shearing and alter the fracture aperture. This variation of fracture aperture will create a micro-seismic moment in the fractured geothermal reservoir. The magnitude of micro-seismic moment and hyper center were changing with time and highly sensitive to the fracture connectivity of each fracture set. The developed mathematical model was observed these variations efficiently. Thus, the developed model can be utilized to address the variations occurred throughout the heat extraction in the fractured geothermal reservoir in conjunction with the activation of fracture and location of hyper center of each seismic moment.","PeriodicalId":306106,"journal":{"name":"Day 4 Thu, June 08, 2023","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigations on Induced Seismicity and Fracture Activation in Fractured Geothermal Reservoirs\",\"authors\":\"Manojkumar Gudala, Zhen Xu, Zeeshan Tariq, B. Yan, Shuyu Sun\",\"doi\":\"10.2118/214418-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study we developed mathematical model for thermo-hydro-mechanical process occurs within the geothermal reservoir with variable rock/fracture/fluid parameters. The influence of fracture network on the cold plume movement, pore pressure, changes in the rock/fracture effective stress under the same operating conditions. The injected fluid transport to extraction well from injection well within the interconnected fractures. In the same direction variation of the effective stress, pore pressure both in rock matrix and fractures was observed. Due to the variation of effective stress in the fracture, it will undergo shearing and alter the fracture aperture. This variation of fracture aperture will create a micro-seismic moment in the fractured geothermal reservoir. The magnitude of micro-seismic moment and hyper center were changing with time and highly sensitive to the fracture connectivity of each fracture set. The developed mathematical model was observed these variations efficiently. Thus, the developed model can be utilized to address the variations occurred throughout the heat extraction in the fractured geothermal reservoir in conjunction with the activation of fracture and location of hyper center of each seismic moment.\",\"PeriodicalId\":306106,\"journal\":{\"name\":\"Day 4 Thu, June 08, 2023\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, June 08, 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/214418-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, June 08, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/214418-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Investigations on Induced Seismicity and Fracture Activation in Fractured Geothermal Reservoirs
In this study we developed mathematical model for thermo-hydro-mechanical process occurs within the geothermal reservoir with variable rock/fracture/fluid parameters. The influence of fracture network on the cold plume movement, pore pressure, changes in the rock/fracture effective stress under the same operating conditions. The injected fluid transport to extraction well from injection well within the interconnected fractures. In the same direction variation of the effective stress, pore pressure both in rock matrix and fractures was observed. Due to the variation of effective stress in the fracture, it will undergo shearing and alter the fracture aperture. This variation of fracture aperture will create a micro-seismic moment in the fractured geothermal reservoir. The magnitude of micro-seismic moment and hyper center were changing with time and highly sensitive to the fracture connectivity of each fracture set. The developed mathematical model was observed these variations efficiently. Thus, the developed model can be utilized to address the variations occurred throughout the heat extraction in the fractured geothermal reservoir in conjunction with the activation of fracture and location of hyper center of each seismic moment.