宝丽来算子和广义browder-weyl定理

B. Duggal
{"title":"宝丽来算子和广义browder-weyl定理","authors":"B. Duggal","doi":"10.3318/PRIA.2008.108.2.149","DOIUrl":null,"url":null,"abstract":"A Banach space operator T ∈ B(X ) is polaroid (left polaroid) if isolated points of the spectrum (resp., isolated points λ of the approximate point spectrum) of T are poles of the resolvent of T (resp., are such that (T − λI) has finite ascent ≤ d and (T − λI)X is closed). Necessary and sufficient conditions for operators T ∈ B(X ) to satisfy generalized and a-generalized Browder and Weyl theorems are given. In the case of polaroid (resp., left polaroid) operators T , it is proved that T satisfies generalized Weyl’s theorem (resp., generalized a–Weyl’s theorem) if and only if T satisfies Weyl’s theorem (resp., a–Weyl’s theorem).","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"4 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"POLAROID OPERATORS AND GENERALIZED BROWDER-WEYL THEOREMS\",\"authors\":\"B. Duggal\",\"doi\":\"10.3318/PRIA.2008.108.2.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Banach space operator T ∈ B(X ) is polaroid (left polaroid) if isolated points of the spectrum (resp., isolated points λ of the approximate point spectrum) of T are poles of the resolvent of T (resp., are such that (T − λI) has finite ascent ≤ d and (T − λI)X is closed). Necessary and sufficient conditions for operators T ∈ B(X ) to satisfy generalized and a-generalized Browder and Weyl theorems are given. In the case of polaroid (resp., left polaroid) operators T , it is proved that T satisfies generalized Weyl’s theorem (resp., generalized a–Weyl’s theorem) if and only if T satisfies Weyl’s theorem (resp., a–Weyl’s theorem).\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"4 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/PRIA.2008.108.2.149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/PRIA.2008.108.2.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

如果谱的孤立点(分别为p。, T的近似点谱的孤立点λ是T的解的极点。,使得(T−λI)有有限上升≤d, (T−λI)X是闭合的。给出了算子T∈B(X)满足广义和a-广义Browder定理和Weyl定理的充分必要条件。以宝丽来为例。,左偏光镜)算子T,证明了T满足广义Weyl定理。,广义a-Weyl定理),当且仅当T满足Weyl定理(参见。(a-Weyl定理)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
POLAROID OPERATORS AND GENERALIZED BROWDER-WEYL THEOREMS
A Banach space operator T ∈ B(X ) is polaroid (left polaroid) if isolated points of the spectrum (resp., isolated points λ of the approximate point spectrum) of T are poles of the resolvent of T (resp., are such that (T − λI) has finite ascent ≤ d and (T − λI)X is closed). Necessary and sufficient conditions for operators T ∈ B(X ) to satisfy generalized and a-generalized Browder and Weyl theorems are given. In the case of polaroid (resp., left polaroid) operators T , it is proved that T satisfies generalized Weyl’s theorem (resp., generalized a–Weyl’s theorem) if and only if T satisfies Weyl’s theorem (resp., a–Weyl’s theorem).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信