侧信道攻击和机器学习方法

A. Levina, D. Sleptsova, Oleg Zaitsev
{"title":"侧信道攻击和机器学习方法","authors":"A. Levina, D. Sleptsova, Oleg Zaitsev","doi":"10.1109/FRUCT-ISPIT.2016.7561525","DOIUrl":null,"url":null,"abstract":"Most modern devices and cryptoalgorithms are vulnerable to a new class of attack called side-channel attack. It analyses physical parameters of the system in order to get secret key. Most spread techniques are simple and differential power attacks with combination of statistical tools. Few studies cover using machine learning methods for pre-processing and key classification tasks. In this paper, we investigate applicability of machine learning methods and their characteristic. Following theoretical results, we examine power traces of AES encryption with Support Vector Machines algorithm and decision trees and provide roadmap for further research.","PeriodicalId":309242,"journal":{"name":"2016 18th Conference of Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Side-channel attacks and machine learning approach\",\"authors\":\"A. Levina, D. Sleptsova, Oleg Zaitsev\",\"doi\":\"10.1109/FRUCT-ISPIT.2016.7561525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most modern devices and cryptoalgorithms are vulnerable to a new class of attack called side-channel attack. It analyses physical parameters of the system in order to get secret key. Most spread techniques are simple and differential power attacks with combination of statistical tools. Few studies cover using machine learning methods for pre-processing and key classification tasks. In this paper, we investigate applicability of machine learning methods and their characteristic. Following theoretical results, we examine power traces of AES encryption with Support Vector Machines algorithm and decision trees and provide roadmap for further research.\",\"PeriodicalId\":309242,\"journal\":{\"name\":\"2016 18th Conference of Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th Conference of Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FRUCT-ISPIT.2016.7561525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th Conference of Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FRUCT-ISPIT.2016.7561525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

大多数现代设备和加密算法都容易受到一类称为侧信道攻击的新攻击。通过对系统物理参数的分析,得到系统的密钥。大多数传播技术是结合统计工具的简单差分攻击。很少有研究涉及使用机器学习方法进行预处理和关键分类任务。本文研究了机器学习方法的适用性及其特点。根据理论结果,我们使用支持向量机算法和决策树检查AES加密的功率轨迹,并为进一步研究提供路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Side-channel attacks and machine learning approach
Most modern devices and cryptoalgorithms are vulnerable to a new class of attack called side-channel attack. It analyses physical parameters of the system in order to get secret key. Most spread techniques are simple and differential power attacks with combination of statistical tools. Few studies cover using machine learning methods for pre-processing and key classification tasks. In this paper, we investigate applicability of machine learning methods and their characteristic. Following theoretical results, we examine power traces of AES encryption with Support Vector Machines algorithm and decision trees and provide roadmap for further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信