{"title":"侧信道攻击和机器学习方法","authors":"A. Levina, D. Sleptsova, Oleg Zaitsev","doi":"10.1109/FRUCT-ISPIT.2016.7561525","DOIUrl":null,"url":null,"abstract":"Most modern devices and cryptoalgorithms are vulnerable to a new class of attack called side-channel attack. It analyses physical parameters of the system in order to get secret key. Most spread techniques are simple and differential power attacks with combination of statistical tools. Few studies cover using machine learning methods for pre-processing and key classification tasks. In this paper, we investigate applicability of machine learning methods and their characteristic. Following theoretical results, we examine power traces of AES encryption with Support Vector Machines algorithm and decision trees and provide roadmap for further research.","PeriodicalId":309242,"journal":{"name":"2016 18th Conference of Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Side-channel attacks and machine learning approach\",\"authors\":\"A. Levina, D. Sleptsova, Oleg Zaitsev\",\"doi\":\"10.1109/FRUCT-ISPIT.2016.7561525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most modern devices and cryptoalgorithms are vulnerable to a new class of attack called side-channel attack. It analyses physical parameters of the system in order to get secret key. Most spread techniques are simple and differential power attacks with combination of statistical tools. Few studies cover using machine learning methods for pre-processing and key classification tasks. In this paper, we investigate applicability of machine learning methods and their characteristic. Following theoretical results, we examine power traces of AES encryption with Support Vector Machines algorithm and decision trees and provide roadmap for further research.\",\"PeriodicalId\":309242,\"journal\":{\"name\":\"2016 18th Conference of Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th Conference of Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FRUCT-ISPIT.2016.7561525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th Conference of Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FRUCT-ISPIT.2016.7561525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Side-channel attacks and machine learning approach
Most modern devices and cryptoalgorithms are vulnerable to a new class of attack called side-channel attack. It analyses physical parameters of the system in order to get secret key. Most spread techniques are simple and differential power attacks with combination of statistical tools. Few studies cover using machine learning methods for pre-processing and key classification tasks. In this paper, we investigate applicability of machine learning methods and their characteristic. Following theoretical results, we examine power traces of AES encryption with Support Vector Machines algorithm and decision trees and provide roadmap for further research.