限制分辨率和切割平面之间的指数分离证明系统

Maria Luisa Bonet, J. L. Esteban, Nicola Galesi, Jan Johannsen
{"title":"限制分辨率和切割平面之间的指数分离证明系统","authors":"Maria Luisa Bonet, J. L. Esteban, Nicola Galesi, Jan Johannsen","doi":"10.1109/SFCS.1998.743514","DOIUrl":null,"url":null,"abstract":"We prove an exponential lower bound for tree-like cutting planes refutations of a set of clauses which has polynomial size resolution refutations. This implies an exponential separation between tree-like and dag-like proofs for both cutting planes and resolution; in both cases only superpolynomial separations were known before. In order to prove this, we extend the lower bounds on the depth of monotone circuits of R. Raz and P. McKenzie (1997) to monotone real circuits. In the case of resolution, we further improve this result by giving an exponential separation of tree-like resolution front (dag-like) regular resolution proofs. In fact, the refutation provided to give the upper bound respects the stronger restriction of being a Davis-Puatam resolution proof. Finally, we prove an exponential separation between Davis-Putnam resolution and unrestricted resolution proofs; only a superpolynomial separations was previously known.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Exponential separations between restricted resolution and cutting planes proof systems\",\"authors\":\"Maria Luisa Bonet, J. L. Esteban, Nicola Galesi, Jan Johannsen\",\"doi\":\"10.1109/SFCS.1998.743514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove an exponential lower bound for tree-like cutting planes refutations of a set of clauses which has polynomial size resolution refutations. This implies an exponential separation between tree-like and dag-like proofs for both cutting planes and resolution; in both cases only superpolynomial separations were known before. In order to prove this, we extend the lower bounds on the depth of monotone circuits of R. Raz and P. McKenzie (1997) to monotone real circuits. In the case of resolution, we further improve this result by giving an exponential separation of tree-like resolution front (dag-like) regular resolution proofs. In fact, the refutation provided to give the upper bound respects the stronger restriction of being a Davis-Puatam resolution proof. Finally, we prove an exponential separation between Davis-Putnam resolution and unrestricted resolution proofs; only a superpolynomial separations was previously known.\",\"PeriodicalId\":228145,\"journal\":{\"name\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1998.743514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

我们证明了具有多项式大小分辨率反驳的子句集的树状切割平面反驳的指数下界。这意味着对于切割平面和分辨率,树状和匕首状证明之间存在指数分离;在这两种情况下,以前只知道超多项式分离。为了证明这一点,我们将R. Raz和P. McKenzie(1997)的单调电路的深度下界推广到单调实电路。在分辨率的情况下,我们通过给出树状分辨率前(dag-like)规则分辨率证明的指数分离进一步改进了这一结果。事实上,给出上界的反驳尊重了作为Davis-Puatam分解证明的更强的限制。最后,我们证明了Davis-Putnam分辨率和无限制分辨率证明之间的指数分离;以前只知道一种超多项式分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential separations between restricted resolution and cutting planes proof systems
We prove an exponential lower bound for tree-like cutting planes refutations of a set of clauses which has polynomial size resolution refutations. This implies an exponential separation between tree-like and dag-like proofs for both cutting planes and resolution; in both cases only superpolynomial separations were known before. In order to prove this, we extend the lower bounds on the depth of monotone circuits of R. Raz and P. McKenzie (1997) to monotone real circuits. In the case of resolution, we further improve this result by giving an exponential separation of tree-like resolution front (dag-like) regular resolution proofs. In fact, the refutation provided to give the upper bound respects the stronger restriction of being a Davis-Puatam resolution proof. Finally, we prove an exponential separation between Davis-Putnam resolution and unrestricted resolution proofs; only a superpolynomial separations was previously known.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信