非均匀膜性能对微型/微通道能量回收通气装置性能影响的研究

Paul D. Armatis, B. Fronk
{"title":"非均匀膜性能对微型/微通道能量回收通气装置性能影响的研究","authors":"Paul D. Armatis, B. Fronk","doi":"10.1115/ICNMM2018-7615","DOIUrl":null,"url":null,"abstract":"Membrane based energy recovery ventilators (ERV) can be used to recover sensible and latent energy from exhaust-to-supply air in building applications. These typically consist of parallel layers of membrane separating the air streams, across which heat and moisture are exchanged. Reducing equipment cost and size remain a key challenge for continued commercialization and adoption of these devices. As membrane effectiveness improves, the air-side heat resistance can begin to dominate transport. To mitigate this, minichannel flow passages (DH < 2 mm) can be used to reduce convective heat and mass transfer. Channels can be formed through direct manipulation of membrane (e.g., pleating, corrugating, etc.), or through the use of spacer or other insert. The use of multiple parallel channels can result in large spatial variations in driving temperature and humidity ratio differences in a single layer membrane, impacting overall transport. Furthermore, the local membrane mass transfer resistance is typically a function of the surface temperature and relative humidity and not a constant value throughout the device. Accurate design models are required to appropriately size ERV equipment and maximize performance for a given equipment volume. Thus, the goal of this study is to use simulation tools to understand how the use of parallel mini- and microchannels and non-uniform membrane properties effect the performance of a membrane ERV in a building application. A two dimensional coupled heat and mass transfer resistance network model is developed. The model is compared against existing data from more detailed CFD analysis, and used to parametrically investigate effects different inlet conditions on device performance.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Effect of Non-Uniform Membrane Properties on Performance of Mini/Microchannel Energy Recovery Ventilator Devices\",\"authors\":\"Paul D. Armatis, B. Fronk\",\"doi\":\"10.1115/ICNMM2018-7615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Membrane based energy recovery ventilators (ERV) can be used to recover sensible and latent energy from exhaust-to-supply air in building applications. These typically consist of parallel layers of membrane separating the air streams, across which heat and moisture are exchanged. Reducing equipment cost and size remain a key challenge for continued commercialization and adoption of these devices. As membrane effectiveness improves, the air-side heat resistance can begin to dominate transport. To mitigate this, minichannel flow passages (DH < 2 mm) can be used to reduce convective heat and mass transfer. Channels can be formed through direct manipulation of membrane (e.g., pleating, corrugating, etc.), or through the use of spacer or other insert. The use of multiple parallel channels can result in large spatial variations in driving temperature and humidity ratio differences in a single layer membrane, impacting overall transport. Furthermore, the local membrane mass transfer resistance is typically a function of the surface temperature and relative humidity and not a constant value throughout the device. Accurate design models are required to appropriately size ERV equipment and maximize performance for a given equipment volume. Thus, the goal of this study is to use simulation tools to understand how the use of parallel mini- and microchannels and non-uniform membrane properties effect the performance of a membrane ERV in a building application. A two dimensional coupled heat and mass transfer resistance network model is developed. The model is compared against existing data from more detailed CFD analysis, and used to parametrically investigate effects different inlet conditions on device performance.\",\"PeriodicalId\":137208,\"journal\":{\"name\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICNMM2018-7615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于膜的能量回收通风机(ERV)可用于从建筑应用中从排气到供气中回收显能量和潜在能量。它们通常由分离气流的平行膜层组成,通过这些膜层交换热量和水分。降低设备成本和尺寸仍然是这些设备持续商业化和采用的关键挑战。随着膜效率的提高,空气侧的热阻可以开始主导运输。为了减轻这种情况,可以使用小通道通道(DH < 2mm)来减少对流传热和传质。通道可以通过直接操作膜(例如,褶皱,波纹等)或通过使用间隔或其他插入物来形成。使用多个平行通道会导致单层膜中驱动温度和湿度比差异的巨大空间变化,从而影响整体运输。此外,局部膜传质阻力通常是表面温度和相对湿度的函数,而不是整个装置的恒定值。准确的设计模型需要适当的尺寸ERV设备,并在给定的设备体积下最大限度地提高性能。因此,本研究的目标是使用模拟工具来了解平行微通道和微通道以及非均匀膜特性的使用如何影响建筑应用中膜ERV的性能。建立了二维耦合传热传质阻力网络模型。将该模型与现有更详细的CFD分析数据进行比较,并用于参数化研究不同进口条件对设备性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of the Effect of Non-Uniform Membrane Properties on Performance of Mini/Microchannel Energy Recovery Ventilator Devices
Membrane based energy recovery ventilators (ERV) can be used to recover sensible and latent energy from exhaust-to-supply air in building applications. These typically consist of parallel layers of membrane separating the air streams, across which heat and moisture are exchanged. Reducing equipment cost and size remain a key challenge for continued commercialization and adoption of these devices. As membrane effectiveness improves, the air-side heat resistance can begin to dominate transport. To mitigate this, minichannel flow passages (DH < 2 mm) can be used to reduce convective heat and mass transfer. Channels can be formed through direct manipulation of membrane (e.g., pleating, corrugating, etc.), or through the use of spacer or other insert. The use of multiple parallel channels can result in large spatial variations in driving temperature and humidity ratio differences in a single layer membrane, impacting overall transport. Furthermore, the local membrane mass transfer resistance is typically a function of the surface temperature and relative humidity and not a constant value throughout the device. Accurate design models are required to appropriately size ERV equipment and maximize performance for a given equipment volume. Thus, the goal of this study is to use simulation tools to understand how the use of parallel mini- and microchannels and non-uniform membrane properties effect the performance of a membrane ERV in a building application. A two dimensional coupled heat and mass transfer resistance network model is developed. The model is compared against existing data from more detailed CFD analysis, and used to parametrically investigate effects different inlet conditions on device performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信