快速R-CNN和DenseNet回归在视网膜眼底图像青光眼检测中的应用

Manar Aljazaeri, Y. Bazi, Haidar A. Almubarak, N. Alajlan
{"title":"快速R-CNN和DenseNet回归在视网膜眼底图像青光眼检测中的应用","authors":"Manar Aljazaeri, Y. Bazi, Haidar A. Almubarak, N. Alajlan","doi":"10.1109/ICCIS49240.2020.9257680","DOIUrl":null,"url":null,"abstract":"Glaucoma is one of the main retinal diseases. Glaucoma affects older people more often, and it can lead to vision loss. Until now there is no medicament for Glaucoma, but early detection is important, wherein it can limit the increase of vision loss or blindness. In this paper, we propose a deep learning approach based on two steps for Glaucoma detection in retinal fundus images. In the first step, we use a faster region proposal neural network (RCNN) to detect the optical disc (OD). Then in a second step, we train a regression network to estimate the cup-to-disc ratio (CDR) by analyzing reign around the detected OD. Experimental results of this method are demonstrated on the MESSIDOR and Magrabi datasets.","PeriodicalId":425637,"journal":{"name":"2020 2nd International Conference on Computer and Information Sciences (ICCIS)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Faster R-CNN and DenseNet Regression for Glaucoma Detection in Retinal Fundus Images\",\"authors\":\"Manar Aljazaeri, Y. Bazi, Haidar A. Almubarak, N. Alajlan\",\"doi\":\"10.1109/ICCIS49240.2020.9257680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glaucoma is one of the main retinal diseases. Glaucoma affects older people more often, and it can lead to vision loss. Until now there is no medicament for Glaucoma, but early detection is important, wherein it can limit the increase of vision loss or blindness. In this paper, we propose a deep learning approach based on two steps for Glaucoma detection in retinal fundus images. In the first step, we use a faster region proposal neural network (RCNN) to detect the optical disc (OD). Then in a second step, we train a regression network to estimate the cup-to-disc ratio (CDR) by analyzing reign around the detected OD. Experimental results of this method are demonstrated on the MESSIDOR and Magrabi datasets.\",\"PeriodicalId\":425637,\"journal\":{\"name\":\"2020 2nd International Conference on Computer and Information Sciences (ICCIS)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Computer and Information Sciences (ICCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS49240.2020.9257680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Computer and Information Sciences (ICCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS49240.2020.9257680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

青光眼是主要的视网膜疾病之一。青光眼更常发生在老年人身上,它会导致视力丧失。到目前为止,还没有治疗青光眼的药物,但早期发现很重要,因为它可以限制视力丧失或失明的增加。在本文中,我们提出了一种基于两步深度学习的视网膜眼底图像青光眼检测方法。在第一步中,我们使用更快的区域建议神经网络(RCNN)来检测光盘(OD)。然后,在第二步中,我们训练一个回归网络,通过分析检测到的OD周围的统治来估计杯盘比(CDR)。在MESSIDOR和Magrabi数据集上验证了该方法的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faster R-CNN and DenseNet Regression for Glaucoma Detection in Retinal Fundus Images
Glaucoma is one of the main retinal diseases. Glaucoma affects older people more often, and it can lead to vision loss. Until now there is no medicament for Glaucoma, but early detection is important, wherein it can limit the increase of vision loss or blindness. In this paper, we propose a deep learning approach based on two steps for Glaucoma detection in retinal fundus images. In the first step, we use a faster region proposal neural network (RCNN) to detect the optical disc (OD). Then in a second step, we train a regression network to estimate the cup-to-disc ratio (CDR) by analyzing reign around the detected OD. Experimental results of this method are demonstrated on the MESSIDOR and Magrabi datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信