对于类型理论的元理论来说,内部搜索就足够了

Rafael Bocquet, A. Kaposi, Christian Sattler
{"title":"对于类型理论的元理论来说,内部搜索就足够了","authors":"Rafael Bocquet, A. Kaposi, Christian Sattler","doi":"10.48550/arXiv.2302.05190","DOIUrl":null,"url":null,"abstract":"Metatheorems about type theories are often proven by interpreting the syntax into models constructed using categorical gluing. We propose to use only sconing (gluing along a global section functor) instead of general gluing. The sconing is performed internally to a presheaf category, and we recover the original glued model by externalization. Our method relies on constructions involving two notions of models: first-order models (with explicit contexts) and higher-order models (without explicit contexts). Sconing turns a displayed higher-order model into a displayed first-order model. Using these, we derive specialized induction principles for the syntax of type theory. The input of such an induction principle is a boilerplate-free description of its motives and methods, not mentioning contexts. The output is a section with computation rules specified in the same internal language. We illustrate our framework by proofs of canonicity, normalization and syntactic parametricity for type theory.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"For the Metatheory of Type Theory, Internal Sconing Is Enough\",\"authors\":\"Rafael Bocquet, A. Kaposi, Christian Sattler\",\"doi\":\"10.48550/arXiv.2302.05190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metatheorems about type theories are often proven by interpreting the syntax into models constructed using categorical gluing. We propose to use only sconing (gluing along a global section functor) instead of general gluing. The sconing is performed internally to a presheaf category, and we recover the original glued model by externalization. Our method relies on constructions involving two notions of models: first-order models (with explicit contexts) and higher-order models (without explicit contexts). Sconing turns a displayed higher-order model into a displayed first-order model. Using these, we derive specialized induction principles for the syntax of type theory. The input of such an induction principle is a boilerplate-free description of its motives and methods, not mentioning contexts. The output is a section with computation rules specified in the same internal language. We illustrate our framework by proofs of canonicity, normalization and syntactic parametricity for type theory.\",\"PeriodicalId\":284975,\"journal\":{\"name\":\"International Conference on Formal Structures for Computation and Deduction\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Formal Structures for Computation and Deduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.05190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.05190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

关于类型理论的元定理通常通过将语法解释为使用范畴粘合构造的模型来证明。我们建议只使用sconing(沿着一个全局section函子粘合)而不是一般的粘合。在内部对预层类别进行扫描,并通过外化恢复原始胶合模型。我们的方法依赖于涉及两个模型概念的结构:一阶模型(具有显式上下文)和高阶模型(没有显式上下文)。scoing将显示的高阶模型转换为显示的一阶模型。利用这些,我们为类型论的语法导出了专门的归纳原则。这种归纳原则的输入是对其动机和方法的无模板描述,而不提及上下文。输出是一个用相同内部语言指定计算规则的部分。我们通过对类型理论的正则性、规范化和句法参数性的证明来说明我们的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
For the Metatheory of Type Theory, Internal Sconing Is Enough
Metatheorems about type theories are often proven by interpreting the syntax into models constructed using categorical gluing. We propose to use only sconing (gluing along a global section functor) instead of general gluing. The sconing is performed internally to a presheaf category, and we recover the original glued model by externalization. Our method relies on constructions involving two notions of models: first-order models (with explicit contexts) and higher-order models (without explicit contexts). Sconing turns a displayed higher-order model into a displayed first-order model. Using these, we derive specialized induction principles for the syntax of type theory. The input of such an induction principle is a boilerplate-free description of its motives and methods, not mentioning contexts. The output is a section with computation rules specified in the same internal language. We illustrate our framework by proofs of canonicity, normalization and syntactic parametricity for type theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信