黑箱系统FSM模型的人工智能与测试方法研究

Roland Groz, A. Simão, N. Brémond, Catherine Oriat
{"title":"黑箱系统FSM模型的人工智能与测试方法研究","authors":"Roland Groz, A. Simão, N. Brémond, Catherine Oriat","doi":"10.1145/3194733.3194736","DOIUrl":null,"url":null,"abstract":"Machine learning in the form of inference of state machine models has gained popularity in model-based testing as a means of retrieving models from software systems. By combining an old idea from machine inference with methods from automata testing in a heuristic approach, we propose a new promising direction for inferring black box systems that cannot be reset. Preliminary experiments show that this heuristic approach scales up well and outperforms more systematic approaches.","PeriodicalId":423703,"journal":{"name":"2018 IEEE/ACM 13th International Workshop on Automation of Software Test (AST)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Revisiting AI and Testing Methods to Infer FSM Models of Black-Box Systems\",\"authors\":\"Roland Groz, A. Simão, N. Brémond, Catherine Oriat\",\"doi\":\"10.1145/3194733.3194736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning in the form of inference of state machine models has gained popularity in model-based testing as a means of retrieving models from software systems. By combining an old idea from machine inference with methods from automata testing in a heuristic approach, we propose a new promising direction for inferring black box systems that cannot be reset. Preliminary experiments show that this heuristic approach scales up well and outperforms more systematic approaches.\",\"PeriodicalId\":423703,\"journal\":{\"name\":\"2018 IEEE/ACM 13th International Workshop on Automation of Software Test (AST)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 13th International Workshop on Automation of Software Test (AST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194733.3194736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 13th International Workshop on Automation of Software Test (AST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194733.3194736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

状态机模型推理形式的机器学习作为一种从软件系统中检索模型的手段,在基于模型的测试中得到了广泛的应用。通过将机器推理的旧思想与启发式方法中的自动机测试方法相结合,我们提出了一个新的有前途的方向来推断无法重置的黑匣子系统。初步实验表明,这种启发式方法可以很好地扩展,并且优于更系统的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting AI and Testing Methods to Infer FSM Models of Black-Box Systems
Machine learning in the form of inference of state machine models has gained popularity in model-based testing as a means of retrieving models from software systems. By combining an old idea from machine inference with methods from automata testing in a heuristic approach, we propose a new promising direction for inferring black box systems that cannot be reset. Preliminary experiments show that this heuristic approach scales up well and outperforms more systematic approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信