模拟机器人操作手的计算方案

Jack C. K. Chou, G. Baciu, H. Kesavan
{"title":"模拟机器人操作手的计算方案","authors":"Jack C. K. Chou, G. Baciu, H. Kesavan","doi":"10.1109/ROBOT.1987.1087926","DOIUrl":null,"url":null,"abstract":"A set of mixed differential and algebraic equations (DAEs) which arises in the simulation of a robot manipulator is solved simultaneously using implicit integration. The dimension of the DAEs which have to be solved by LU factorization at each integration step can be reduced to the number of degrees of freedom by exploring the special structure of the Jacobian matrix of DAEs. The independent and dependent generalized coordinates are determined directly from the system topology. The simulation of a 6-R manipulator is given as an example.","PeriodicalId":438447,"journal":{"name":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Computational scheme for simulating robot manipulators\",\"authors\":\"Jack C. K. Chou, G. Baciu, H. Kesavan\",\"doi\":\"10.1109/ROBOT.1987.1087926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set of mixed differential and algebraic equations (DAEs) which arises in the simulation of a robot manipulator is solved simultaneously using implicit integration. The dimension of the DAEs which have to be solved by LU factorization at each integration step can be reduced to the number of degrees of freedom by exploring the special structure of the Jacobian matrix of DAEs. The independent and dependent generalized coordinates are determined directly from the system topology. The simulation of a 6-R manipulator is given as an example.\",\"PeriodicalId\":438447,\"journal\":{\"name\":\"Proceedings. 1987 IEEE International Conference on Robotics and Automation\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1987 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1987.1087926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1987.1087926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

采用隐式积分法求解了机械臂仿真中出现的一组混合微分方程和代数方程。通过对矩阵雅可比矩阵的特殊结构的探索,可以将离散自由度方程的维数简化为若干个自由度。独立和相关的广义坐标直接由系统拓扑确定。以6-R机械臂为例进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational scheme for simulating robot manipulators
A set of mixed differential and algebraic equations (DAEs) which arises in the simulation of a robot manipulator is solved simultaneously using implicit integration. The dimension of the DAEs which have to be solved by LU factorization at each integration step can be reduced to the number of degrees of freedom by exploring the special structure of the Jacobian matrix of DAEs. The independent and dependent generalized coordinates are determined directly from the system topology. The simulation of a 6-R manipulator is given as an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信