C. Maggi, F. Saglimbeni, V. Sosa, R. Di Leonardo, B. Nath, A. Puglisi
{"title":"精子游泳精度的热力学极限","authors":"C. Maggi, F. Saglimbeni, V. Sosa, R. Di Leonardo, B. Nath, A. Puglisi","doi":"10.1103/prxlife.1.013003","DOIUrl":null,"url":null,"abstract":"Sperm swimming is crucial to fertilise the egg, in nature and in assisted reproductive technologies. Modelling the sperm dynamics involves elasticity, hydrodynamics, internal active forces, and out-of-equilibrium noise. Here we demonstrate experimentally the relevance of energy dissipation for sperm beating fluctuations. For each motile cell, we reconstruct the time-evolution of the two main tail's spatial modes, which together trace a noisy limit cycle characterised by a maximum level of precision $p_{max}$. Our results indicate $p_{max} \\sim 10^2 s^{-1}$, remarkably close to the estimated precision of a dynein molecular motor actuating the flagellum, which is bounded by its energy dissipation rate according to the Thermodynamic Uncertainty Relation. Further experiments under oxygen deprivation show that $p_{max}$ decays with energy consumption, as it occurs for a single molecular motor. Both observations can be explained by conjecturing a high level of coordination among the conformational changes of dynein motors. This conjecture is supported by a theoretical model for the beating of an ideal flagellum actuated by a collection of motors, including a motor-motor nearest neighbour coupling of strength $K$: when $K$ is small the precision of a large flagellum is much higher than the single motor one. On the contrary, when $K$ is large the two become comparable.","PeriodicalId":420529,"journal":{"name":"PRX Life","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermodynamic Limits of Sperm Swimming Precision\",\"authors\":\"C. Maggi, F. Saglimbeni, V. Sosa, R. Di Leonardo, B. Nath, A. Puglisi\",\"doi\":\"10.1103/prxlife.1.013003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sperm swimming is crucial to fertilise the egg, in nature and in assisted reproductive technologies. Modelling the sperm dynamics involves elasticity, hydrodynamics, internal active forces, and out-of-equilibrium noise. Here we demonstrate experimentally the relevance of energy dissipation for sperm beating fluctuations. For each motile cell, we reconstruct the time-evolution of the two main tail's spatial modes, which together trace a noisy limit cycle characterised by a maximum level of precision $p_{max}$. Our results indicate $p_{max} \\\\sim 10^2 s^{-1}$, remarkably close to the estimated precision of a dynein molecular motor actuating the flagellum, which is bounded by its energy dissipation rate according to the Thermodynamic Uncertainty Relation. Further experiments under oxygen deprivation show that $p_{max}$ decays with energy consumption, as it occurs for a single molecular motor. Both observations can be explained by conjecturing a high level of coordination among the conformational changes of dynein motors. This conjecture is supported by a theoretical model for the beating of an ideal flagellum actuated by a collection of motors, including a motor-motor nearest neighbour coupling of strength $K$: when $K$ is small the precision of a large flagellum is much higher than the single motor one. On the contrary, when $K$ is large the two become comparable.\",\"PeriodicalId\":420529,\"journal\":{\"name\":\"PRX Life\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Life\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxlife.1.013003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxlife.1.013003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sperm swimming is crucial to fertilise the egg, in nature and in assisted reproductive technologies. Modelling the sperm dynamics involves elasticity, hydrodynamics, internal active forces, and out-of-equilibrium noise. Here we demonstrate experimentally the relevance of energy dissipation for sperm beating fluctuations. For each motile cell, we reconstruct the time-evolution of the two main tail's spatial modes, which together trace a noisy limit cycle characterised by a maximum level of precision $p_{max}$. Our results indicate $p_{max} \sim 10^2 s^{-1}$, remarkably close to the estimated precision of a dynein molecular motor actuating the flagellum, which is bounded by its energy dissipation rate according to the Thermodynamic Uncertainty Relation. Further experiments under oxygen deprivation show that $p_{max}$ decays with energy consumption, as it occurs for a single molecular motor. Both observations can be explained by conjecturing a high level of coordination among the conformational changes of dynein motors. This conjecture is supported by a theoretical model for the beating of an ideal flagellum actuated by a collection of motors, including a motor-motor nearest neighbour coupling of strength $K$: when $K$ is small the precision of a large flagellum is much higher than the single motor one. On the contrary, when $K$ is large the two become comparable.