基于监督动态主题建模的时间科学信息推荐

Zhuoren Jiang
{"title":"基于监督动态主题建模的时间科学信息推荐","authors":"Zhuoren Jiang","doi":"10.1145/2684822.2697036","DOIUrl":null,"url":null,"abstract":"Scientific information recommendation is crucial to assist scholars for their researches. Citation recommendation is an important field of scientific recommendation. Traditional approaches ignore the chronological nature of the citation recommendation task. In this study, I propose the \"Chronological Citation Recommendation,\" which assumes initial user information need could shift while they are looking for the papers in different time slices. Specifically, I employed a supervised dynamic topic model to characterize the content \"time-varying\" dynamics and constructed a novel heterogeneous graph that contains dynamic topic-based information, time-decay citation information and word-based information. I applied different meta-paths for different ranking hypotheses, which carried different types of information for citation recommendation in different time slices along with information need shifting. I plan to generate the final \"Chronological Citation Recommendation\" rankings by feature integration using Learning to Rank. \"Chronological Citation Recommendation\" will recommend time-series ranking lists based on initial user textual information need. Preliminary experiments on the ACM corpus show that chronological citation recommendation will significantly improve the citation recommendation performance.","PeriodicalId":179443,"journal":{"name":"Proceedings of the Eighth ACM International Conference on Web Search and Data Mining","volume":"580 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Chronological Scientific Information Recommendation via Supervised Dynamic Topic Modeling\",\"authors\":\"Zhuoren Jiang\",\"doi\":\"10.1145/2684822.2697036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific information recommendation is crucial to assist scholars for their researches. Citation recommendation is an important field of scientific recommendation. Traditional approaches ignore the chronological nature of the citation recommendation task. In this study, I propose the \\\"Chronological Citation Recommendation,\\\" which assumes initial user information need could shift while they are looking for the papers in different time slices. Specifically, I employed a supervised dynamic topic model to characterize the content \\\"time-varying\\\" dynamics and constructed a novel heterogeneous graph that contains dynamic topic-based information, time-decay citation information and word-based information. I applied different meta-paths for different ranking hypotheses, which carried different types of information for citation recommendation in different time slices along with information need shifting. I plan to generate the final \\\"Chronological Citation Recommendation\\\" rankings by feature integration using Learning to Rank. \\\"Chronological Citation Recommendation\\\" will recommend time-series ranking lists based on initial user textual information need. Preliminary experiments on the ACM corpus show that chronological citation recommendation will significantly improve the citation recommendation performance.\",\"PeriodicalId\":179443,\"journal\":{\"name\":\"Proceedings of the Eighth ACM International Conference on Web Search and Data Mining\",\"volume\":\"580 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eighth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2684822.2697036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2684822.2697036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

科学信息推荐是辅助学者开展研究的重要手段。引文推荐是科学推荐的一个重要领域。传统的方法忽略了引文推荐任务的时间顺序。在这项研究中,我提出了“按时间顺序推荐”,它假设当用户在不同的时间片中寻找论文时,初始用户信息需求可能会发生变化。具体而言,我采用了一个有监督的动态主题模型来表征内容的“时变”动态,并构建了一个包含动态主题信息、时间衰减引文信息和基于单词信息的新型异构图。我对不同的排名假设采用了不同的元路径,这些元路径在不同的时间片中携带了不同类型的信息用于引文推荐,同时信息需求也发生了变化。我计划通过使用学习排序的功能集成来生成最终的“按时间顺序引文推荐”排名。“时序引文推荐”将根据初始用户文本信息需求推荐时间序列排序列表。在ACM语料库上的初步实验表明,按时间顺序推荐可以显著提高引文推荐的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chronological Scientific Information Recommendation via Supervised Dynamic Topic Modeling
Scientific information recommendation is crucial to assist scholars for their researches. Citation recommendation is an important field of scientific recommendation. Traditional approaches ignore the chronological nature of the citation recommendation task. In this study, I propose the "Chronological Citation Recommendation," which assumes initial user information need could shift while they are looking for the papers in different time slices. Specifically, I employed a supervised dynamic topic model to characterize the content "time-varying" dynamics and constructed a novel heterogeneous graph that contains dynamic topic-based information, time-decay citation information and word-based information. I applied different meta-paths for different ranking hypotheses, which carried different types of information for citation recommendation in different time slices along with information need shifting. I plan to generate the final "Chronological Citation Recommendation" rankings by feature integration using Learning to Rank. "Chronological Citation Recommendation" will recommend time-series ranking lists based on initial user textual information need. Preliminary experiments on the ACM corpus show that chronological citation recommendation will significantly improve the citation recommendation performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信