基于多分类器的棕榈脉识别方法

Marco Micheletto, G. Orrú, Imad Rida, Luca Ghiani, G. Marcialis
{"title":"基于多分类器的棕榈脉识别方法","authors":"Marco Micheletto, G. Orrú, Imad Rida, Luca Ghiani, G. Marcialis","doi":"10.1109/IPTA.2018.8608150","DOIUrl":null,"url":null,"abstract":"The usual trend for the conventional palmvein recognition techniques is first to extract discriminative hand-crafted feature representations from the raw images, and then feed a classifier with them. Unfortunately, it is not yet clear how the effectiveness of such features may be held in case of a large user population or in environments where the variability among acquisitions of the same person may increase. In order to face with this problem, it may be considered that the use of multiple classifiers may increase the recognition performance with respect to that of the best individual classifier, and also may handle the problem of an effective feature extraction step. In this paper, we explore the ensemble classifier approach based on Random Subspace Method (RSM), where the basic feature space is derived after a preliminary feature reduction step on the source image, and compare results achieved with and without the use of hand-crafted features. Experimental results allow us concluding that this approach leads to better results under different environmental conditions.","PeriodicalId":272294,"journal":{"name":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A multiple classifiers-based approach to palmvein identification\",\"authors\":\"Marco Micheletto, G. Orrú, Imad Rida, Luca Ghiani, G. Marcialis\",\"doi\":\"10.1109/IPTA.2018.8608150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The usual trend for the conventional palmvein recognition techniques is first to extract discriminative hand-crafted feature representations from the raw images, and then feed a classifier with them. Unfortunately, it is not yet clear how the effectiveness of such features may be held in case of a large user population or in environments where the variability among acquisitions of the same person may increase. In order to face with this problem, it may be considered that the use of multiple classifiers may increase the recognition performance with respect to that of the best individual classifier, and also may handle the problem of an effective feature extraction step. In this paper, we explore the ensemble classifier approach based on Random Subspace Method (RSM), where the basic feature space is derived after a preliminary feature reduction step on the source image, and compare results achieved with and without the use of hand-crafted features. Experimental results allow us concluding that this approach leads to better results under different environmental conditions.\",\"PeriodicalId\":272294,\"journal\":{\"name\":\"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2018.8608150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2018.8608150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

传统掌纹识别技术的通常趋势是首先从原始图像中提取判别性的手工特征表示,然后将其输入分类器。不幸的是,目前尚不清楚在大量用户的情况下,或者在同一个人的收购之间的可变性可能增加的环境中,如何保持这些功能的有效性。为了面对这一问题,可以考虑使用多个分类器相对于最佳的单个分类器可以提高识别性能,并且可以处理有效的特征提取步骤问题。在本文中,我们探索了基于随机子空间方法(RSM)的集成分类器方法,其中基本特征空间是在对源图像进行初步特征约简后导出的,并比较了使用和不使用手工制作特征所获得的结果。实验结果表明,该方法在不同的环境条件下均能取得较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multiple classifiers-based approach to palmvein identification
The usual trend for the conventional palmvein recognition techniques is first to extract discriminative hand-crafted feature representations from the raw images, and then feed a classifier with them. Unfortunately, it is not yet clear how the effectiveness of such features may be held in case of a large user population or in environments where the variability among acquisitions of the same person may increase. In order to face with this problem, it may be considered that the use of multiple classifiers may increase the recognition performance with respect to that of the best individual classifier, and also may handle the problem of an effective feature extraction step. In this paper, we explore the ensemble classifier approach based on Random Subspace Method (RSM), where the basic feature space is derived after a preliminary feature reduction step on the source image, and compare results achieved with and without the use of hand-crafted features. Experimental results allow us concluding that this approach leads to better results under different environmental conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信