三次b样条小波矩与Zernike矩结合特征的不变字符识别

Chao Kan, M. Srinath
{"title":"三次b样条小波矩与Zernike矩结合特征的不变字符识别","authors":"Chao Kan, M. Srinath","doi":"10.1109/ITCC.2001.918848","DOIUrl":null,"url":null,"abstract":"In this paper a new method of combining cubic B-spline wavelet moments (WMs) and Zernike moments (ZMs) into a common feature vector is proposed for invariant pattern classification. By doing so, the ability of ZMs to capture global features and WMs to differentiate between subtle variations in description can be utilized at the same time. Analysis and simulations verify that the new method achieves better performance with respect to classification accuracy than using ZMs or WMs separately. In addition, this new method should also be applicable to other areas of pattern recognition.","PeriodicalId":318295,"journal":{"name":"Proceedings International Conference on Information Technology: Coding and Computing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Combined features of cubic B-spline wavelet moments and Zernike moments for invariant character recognition\",\"authors\":\"Chao Kan, M. Srinath\",\"doi\":\"10.1109/ITCC.2001.918848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new method of combining cubic B-spline wavelet moments (WMs) and Zernike moments (ZMs) into a common feature vector is proposed for invariant pattern classification. By doing so, the ability of ZMs to capture global features and WMs to differentiate between subtle variations in description can be utilized at the same time. Analysis and simulations verify that the new method achieves better performance with respect to classification accuracy than using ZMs or WMs separately. In addition, this new method should also be applicable to other areas of pattern recognition.\",\"PeriodicalId\":318295,\"journal\":{\"name\":\"Proceedings International Conference on Information Technology: Coding and Computing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Conference on Information Technology: Coding and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITCC.2001.918848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Information Technology: Coding and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCC.2001.918848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文提出了一种将三次b样条小波矩和泽尼克矩组合成一个共同特征向量的方法,用于不变模式分类。通过这样做,可以同时利用zm捕获全局特征和wm区分描述中的细微变化的能力。分析和仿真验证了新方法在分类精度方面比单独使用ZMs或WMs取得了更好的性能。此外,该方法也可应用于模式识别的其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined features of cubic B-spline wavelet moments and Zernike moments for invariant character recognition
In this paper a new method of combining cubic B-spline wavelet moments (WMs) and Zernike moments (ZMs) into a common feature vector is proposed for invariant pattern classification. By doing so, the ability of ZMs to capture global features and WMs to differentiate between subtle variations in description can be utilized at the same time. Analysis and simulations verify that the new method achieves better performance with respect to classification accuracy than using ZMs or WMs separately. In addition, this new method should also be applicable to other areas of pattern recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信