机器翻译中引起偏差的歧义分类

M. Mechura
{"title":"机器翻译中引起偏差的歧义分类","authors":"M. Mechura","doi":"10.18653/v1/2022.gebnlp-1.18","DOIUrl":null,"url":null,"abstract":"This paper introduces a taxonomy of phenomena which cause bias in machine translation, covering gender bias (people being male and/or female), number bias (singular you versus plural you) and formality bias (informal you versus formal you). Our taxonomy is a formalism for describing situations in machine translation when the source text leaves some of these properties unspecified (eg. does not say whether doctor is male or female) but the target language requires the property to be specified (eg. because it does not have a gender-neutral word for doctor). The formalism described here is used internally by a web-based tool we have built for detecting and correcting bias in the output of any machine translator.","PeriodicalId":161909,"journal":{"name":"Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Taxonomy of Bias-Causing Ambiguities in Machine Translation\",\"authors\":\"M. Mechura\",\"doi\":\"10.18653/v1/2022.gebnlp-1.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a taxonomy of phenomena which cause bias in machine translation, covering gender bias (people being male and/or female), number bias (singular you versus plural you) and formality bias (informal you versus formal you). Our taxonomy is a formalism for describing situations in machine translation when the source text leaves some of these properties unspecified (eg. does not say whether doctor is male or female) but the target language requires the property to be specified (eg. because it does not have a gender-neutral word for doctor). The formalism described here is used internally by a web-based tool we have built for detecting and correcting bias in the output of any machine translator.\",\"PeriodicalId\":161909,\"journal\":{\"name\":\"Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.gebnlp-1.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.gebnlp-1.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了在机器翻译中引起偏见的现象,包括性别偏见(人们是男性和/或女性),数字偏见(单数you和复数you)和形式偏见(非正式的you和正式的you)。我们的分类法是一种形式主义,用于描述机器翻译中源文本未指定某些属性的情况。没有说明医生是男是女),但目标语言要求指定属性(例如。因为它没有一个中性的词来表示医生)。这里描述的形式被我们构建的一个基于web的工具内部使用,该工具用于检测和纠正任何机器翻译输出中的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Taxonomy of Bias-Causing Ambiguities in Machine Translation
This paper introduces a taxonomy of phenomena which cause bias in machine translation, covering gender bias (people being male and/or female), number bias (singular you versus plural you) and formality bias (informal you versus formal you). Our taxonomy is a formalism for describing situations in machine translation when the source text leaves some of these properties unspecified (eg. does not say whether doctor is male or female) but the target language requires the property to be specified (eg. because it does not have a gender-neutral word for doctor). The formalism described here is used internally by a web-based tool we have built for detecting and correcting bias in the output of any machine translator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信