实时系统中的效用应计对象分布

M. Mohaqeqi, M. Kargahi
{"title":"实时系统中的效用应计对象分布","authors":"M. Mohaqeqi, M. Kargahi","doi":"10.1109/ICPADS.2010.99","DOIUrl":null,"url":null,"abstract":"This paper considers object-based distributed real-time systems within which objects provide system services to the real-time tasks. Each task is subject to a time/utility function (TUF) which determines the accrued utility of the task according to its completion time. One major problem in such systems is to place the objects onto the computing nodes so as to maximize the total accrued utility. Thus, we propose a utility accrual object distribution (UAOD) algorithm which consists of two phases. In the first phase, through object placement and replication beside some types of deadline decomposition and adaptation, the computing nodes are reserved for the most beneficial tasks. As the second phase, UAOD follows a load-balancing algorithm for the placement of the remaining objects on the nodes to service the less beneficial tasks. Simulation results reveal that the total accrued utility is improved with the UAOD algorithm comparing to the traditional object placement methods.","PeriodicalId":365914,"journal":{"name":"2010 IEEE 16th International Conference on Parallel and Distributed Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Utility Accrual Object Distribution in Real-Time Systems\",\"authors\":\"M. Mohaqeqi, M. Kargahi\",\"doi\":\"10.1109/ICPADS.2010.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers object-based distributed real-time systems within which objects provide system services to the real-time tasks. Each task is subject to a time/utility function (TUF) which determines the accrued utility of the task according to its completion time. One major problem in such systems is to place the objects onto the computing nodes so as to maximize the total accrued utility. Thus, we propose a utility accrual object distribution (UAOD) algorithm which consists of two phases. In the first phase, through object placement and replication beside some types of deadline decomposition and adaptation, the computing nodes are reserved for the most beneficial tasks. As the second phase, UAOD follows a load-balancing algorithm for the placement of the remaining objects on the nodes to service the less beneficial tasks. Simulation results reveal that the total accrued utility is improved with the UAOD algorithm comparing to the traditional object placement methods.\",\"PeriodicalId\":365914,\"journal\":{\"name\":\"2010 IEEE 16th International Conference on Parallel and Distributed Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 16th International Conference on Parallel and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS.2010.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 16th International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2010.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了基于对象的分布式实时系统,其中对象为实时任务提供系统服务。每个任务都受时间/效用函数(TUF)的约束,该函数根据任务的完成时间确定任务的累积效用。在这样的系统中,一个主要的问题是将对象放置到计算节点上,以使总累积效用最大化。因此,我们提出了一种由两个阶段组成的效用应计目标分布(UAOD)算法。在第一阶段,通过对象放置和复制以及一些类型的截止日期分解和自适应,将计算节点保留给最有利的任务。作为第二阶段,UAOD遵循负载平衡算法,将剩余对象放置在节点上,以服务于不太有利的任务。仿真结果表明,与传统的目标放置方法相比,UAOD算法提高了总累积效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utility Accrual Object Distribution in Real-Time Systems
This paper considers object-based distributed real-time systems within which objects provide system services to the real-time tasks. Each task is subject to a time/utility function (TUF) which determines the accrued utility of the task according to its completion time. One major problem in such systems is to place the objects onto the computing nodes so as to maximize the total accrued utility. Thus, we propose a utility accrual object distribution (UAOD) algorithm which consists of two phases. In the first phase, through object placement and replication beside some types of deadline decomposition and adaptation, the computing nodes are reserved for the most beneficial tasks. As the second phase, UAOD follows a load-balancing algorithm for the placement of the remaining objects on the nodes to service the less beneficial tasks. Simulation results reveal that the total accrued utility is improved with the UAOD algorithm comparing to the traditional object placement methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信