{"title":"分辨率和多项式微积分的证明搜索算法研究","authors":"Maria Luisa Bonet, Nicola Galesi","doi":"10.1109/SFFCS.1999.814614","DOIUrl":null,"url":null,"abstract":"The paper is concerned with the complexity of proofs and of searching for proofs in two propositional proof systems: Resolution and Polynomial Calculus (PC). For the former system we show that the recently proposed algorithm of E. Ben-Sasson and A. Wigderson (1999) for searching for proofs cannot give better than weakly exponential performance. This is a consequence of showing optimality of their general relationship, referred to as size-width trade-off. We moreover obtain the optimality of the size width trade-off for the widely used restrictions of resolution: regular, Davis-Putnam, negative, positive and linear. As for the second system, we show that the direct translation to polynomials of a CNF formula having short resolution proofs, cannot be refuted in PC with degree less than /spl Omega/ (log n). A consequence of this is that the simulation of resolution by PC of M. Clegg, J. Edmonds and R. Impagliazzo (1996) cannot be improved to better than quasipolynomial in the case where we start with small resolution proofs. We conjecture that the simulation of M. Clegg et al. is optimal.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"A study of proof search algorithms for resolution and polynomial calculus\",\"authors\":\"Maria Luisa Bonet, Nicola Galesi\",\"doi\":\"10.1109/SFFCS.1999.814614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is concerned with the complexity of proofs and of searching for proofs in two propositional proof systems: Resolution and Polynomial Calculus (PC). For the former system we show that the recently proposed algorithm of E. Ben-Sasson and A. Wigderson (1999) for searching for proofs cannot give better than weakly exponential performance. This is a consequence of showing optimality of their general relationship, referred to as size-width trade-off. We moreover obtain the optimality of the size width trade-off for the widely used restrictions of resolution: regular, Davis-Putnam, negative, positive and linear. As for the second system, we show that the direct translation to polynomials of a CNF formula having short resolution proofs, cannot be refuted in PC with degree less than /spl Omega/ (log n). A consequence of this is that the simulation of resolution by PC of M. Clegg, J. Edmonds and R. Impagliazzo (1996) cannot be improved to better than quasipolynomial in the case where we start with small resolution proofs. We conjecture that the simulation of M. Clegg et al. is optimal.\",\"PeriodicalId\":385047,\"journal\":{\"name\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFFCS.1999.814614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A study of proof search algorithms for resolution and polynomial calculus
The paper is concerned with the complexity of proofs and of searching for proofs in two propositional proof systems: Resolution and Polynomial Calculus (PC). For the former system we show that the recently proposed algorithm of E. Ben-Sasson and A. Wigderson (1999) for searching for proofs cannot give better than weakly exponential performance. This is a consequence of showing optimality of their general relationship, referred to as size-width trade-off. We moreover obtain the optimality of the size width trade-off for the widely used restrictions of resolution: regular, Davis-Putnam, negative, positive and linear. As for the second system, we show that the direct translation to polynomials of a CNF formula having short resolution proofs, cannot be refuted in PC with degree less than /spl Omega/ (log n). A consequence of this is that the simulation of resolution by PC of M. Clegg, J. Edmonds and R. Impagliazzo (1996) cannot be improved to better than quasipolynomial in the case where we start with small resolution proofs. We conjecture that the simulation of M. Clegg et al. is optimal.