具有良好泛化的感知器多层人工神经网络

Tian Yubo, Dong Yue, Zhang Xiaoqiu, Zhu Renjie
{"title":"具有良好泛化的感知器多层人工神经网络","authors":"Tian Yubo, Dong Yue, Zhang Xiaoqiu, Zhu Renjie","doi":"10.1109/ICEAA.2007.4387431","DOIUrl":null,"url":null,"abstract":"Feedforward perceptron multilayer (PML) ANNs with error back propagation learning method is often used in engineering design. Unfortunately, its generalization is often poor. In this paper, some reformative methods are proposed to improve its generalization. Based on the improved PML ANN, E-plane T-kind terminal matched load of rectangular waveguide is designed successfully. The result given by the ANN is agreeable with FDTD very well.","PeriodicalId":273595,"journal":{"name":"2007 International Conference on Electromagnetics in Advanced Applications","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perceptron Multilayer Artificial Neural Network with Good Generalization\",\"authors\":\"Tian Yubo, Dong Yue, Zhang Xiaoqiu, Zhu Renjie\",\"doi\":\"10.1109/ICEAA.2007.4387431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feedforward perceptron multilayer (PML) ANNs with error back propagation learning method is often used in engineering design. Unfortunately, its generalization is often poor. In this paper, some reformative methods are proposed to improve its generalization. Based on the improved PML ANN, E-plane T-kind terminal matched load of rectangular waveguide is designed successfully. The result given by the ANN is agreeable with FDTD very well.\",\"PeriodicalId\":273595,\"journal\":{\"name\":\"2007 International Conference on Electromagnetics in Advanced Applications\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Electromagnetics in Advanced Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEAA.2007.4387431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Electromagnetics in Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2007.4387431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有误差反向传播学习方法的前馈感知器多层人工神经网络常用于工程设计。不幸的是,它的泛化往往很差。本文提出了一些改进方法,以提高其通用性。基于改进的PML神经网络,成功地设计了矩形波导的e平面t型终端匹配负载。人工神经网络的计算结果与时域有限差分法非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perceptron Multilayer Artificial Neural Network with Good Generalization
Feedforward perceptron multilayer (PML) ANNs with error back propagation learning method is often used in engineering design. Unfortunately, its generalization is often poor. In this paper, some reformative methods are proposed to improve its generalization. Based on the improved PML ANN, E-plane T-kind terminal matched load of rectangular waveguide is designed successfully. The result given by the ANN is agreeable with FDTD very well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信