一种新的数字信号调制衰落深度分类体系

Peicong Hu, Wendong Yang, Na Pu, Yunfei Peng, Xiang Ding
{"title":"一种新的数字信号调制衰落深度分类体系","authors":"Peicong Hu, Wendong Yang, Na Pu, Yunfei Peng, Xiang Ding","doi":"10.1109/ICCCS52626.2021.9449146","DOIUrl":null,"url":null,"abstract":"In this paper, we simulate digital signals of six usual modulation patterns considering Rician fading and propose a new deep neural network structure (CGDNN) combining Convolutional Neural Networks (CNNs) with Gated Recurrent Unit (GRU). Simulation results show that the proposed structure has the ability to classify the signal modulation patterns regardless the influence of different Rician K-factors and has better performance than conventional structures including CNNs and CLDNNs.","PeriodicalId":376290,"journal":{"name":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Deep Architecture for Digital Signal Modulation Classification over Rician Fading\",\"authors\":\"Peicong Hu, Wendong Yang, Na Pu, Yunfei Peng, Xiang Ding\",\"doi\":\"10.1109/ICCCS52626.2021.9449146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we simulate digital signals of six usual modulation patterns considering Rician fading and propose a new deep neural network structure (CGDNN) combining Convolutional Neural Networks (CNNs) with Gated Recurrent Unit (GRU). Simulation results show that the proposed structure has the ability to classify the signal modulation patterns regardless the influence of different Rician K-factors and has better performance than conventional structures including CNNs and CLDNNs.\",\"PeriodicalId\":376290,\"journal\":{\"name\":\"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCS52626.2021.9449146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS52626.2021.9449146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们模拟了六种常见调制模式的数字信号,并考虑了梯度衰落,提出了一种将卷积神经网络(cnn)与门控循环单元(GRU)相结合的新型深度神经网络结构(CGDNN)。仿真结果表明,该结构具有对信号调制模式进行分类的能力,且不受不同时域k因子的影响,其性能优于cnn和CLDNNs等传统结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Deep Architecture for Digital Signal Modulation Classification over Rician Fading
In this paper, we simulate digital signals of six usual modulation patterns considering Rician fading and propose a new deep neural network structure (CGDNN) combining Convolutional Neural Networks (CNNs) with Gated Recurrent Unit (GRU). Simulation results show that the proposed structure has the ability to classify the signal modulation patterns regardless the influence of different Rician K-factors and has better performance than conventional structures including CNNs and CLDNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信