基于小波变换的凸集投影超分辨算法

Guo Lei, He Zhiming
{"title":"基于小波变换的凸集投影超分辨算法","authors":"Guo Lei, He Zhiming","doi":"10.1109/ICOSP.2008.4697306","DOIUrl":null,"url":null,"abstract":"Projection on convex sets (POCS) is an algorithm which produces high-resolution image from a set of low-resolution images, but doesnpsilat perform very well on the reconstruction of high frequency information and depressing noise. In this paper, wavelet transform is utilized to extract high frequency hidden information and depress the noise in the low resolution images based on POCS, thus the detailed information of images and SNR are better than the results of normal POCS. The results of simulation confirm that the method in this paper is more effective than POCS algorithm.","PeriodicalId":445699,"journal":{"name":"2008 9th International Conference on Signal Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A projection on Convex Sets super-resolution algorithm using wavelet transform\",\"authors\":\"Guo Lei, He Zhiming\",\"doi\":\"10.1109/ICOSP.2008.4697306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Projection on convex sets (POCS) is an algorithm which produces high-resolution image from a set of low-resolution images, but doesnpsilat perform very well on the reconstruction of high frequency information and depressing noise. In this paper, wavelet transform is utilized to extract high frequency hidden information and depress the noise in the low resolution images based on POCS, thus the detailed information of images and SNR are better than the results of normal POCS. The results of simulation confirm that the method in this paper is more effective than POCS algorithm.\",\"PeriodicalId\":445699,\"journal\":{\"name\":\"2008 9th International Conference on Signal Processing\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 9th International Conference on Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2008.4697306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2008.4697306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

凸集投影(POCS)是一种从一组低分辨率图像中生成高分辨率图像的算法,但在高频信息的重建和噪声抑制方面表现不佳。本文利用小波变换提取低分辨率图像中的高频隐藏信息,抑制噪声,使图像的详细信息和信噪比优于普通POCS。仿真结果表明,本文方法比POCS算法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A projection on Convex Sets super-resolution algorithm using wavelet transform
Projection on convex sets (POCS) is an algorithm which produces high-resolution image from a set of low-resolution images, but doesnpsilat perform very well on the reconstruction of high frequency information and depressing noise. In this paper, wavelet transform is utilized to extract high frequency hidden information and depress the noise in the low resolution images based on POCS, thus the detailed information of images and SNR are better than the results of normal POCS. The results of simulation confirm that the method in this paper is more effective than POCS algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信