关于多值可分离无序码

Y. Nagata, M. Mukaidono
{"title":"关于多值可分离无序码","authors":"Y. Nagata, M. Mukaidono","doi":"10.1109/ISMVL.1994.302179","DOIUrl":null,"url":null,"abstract":"A new encoding/decoding scheme of multiple-valued separable balanced codes are presented. These codes have 2/spl middot/m information digits and m/spl middot/(R-2) check digits in radices R/spl ges/4, and 2/spl middot/m-1 information digits and m+1 check digits in R=3 where code-length n=R/spl middot/m. In actual use of code-lengths and radices, it is shown that the presented codes are efficient in comparison with multiple-valued Berger-codes which are known as optimal unordered codes.<<ETX>>","PeriodicalId":137138,"journal":{"name":"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On multiple-valued separable unordered codes\",\"authors\":\"Y. Nagata, M. Mukaidono\",\"doi\":\"10.1109/ISMVL.1994.302179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new encoding/decoding scheme of multiple-valued separable balanced codes are presented. These codes have 2/spl middot/m information digits and m/spl middot/(R-2) check digits in radices R/spl ges/4, and 2/spl middot/m-1 information digits and m+1 check digits in R=3 where code-length n=R/spl middot/m. In actual use of code-lengths and radices, it is shown that the presented codes are efficient in comparison with multiple-valued Berger-codes which are known as optimal unordered codes.<<ETX>>\",\"PeriodicalId\":137138,\"journal\":{\"name\":\"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1994.302179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1994.302179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的多值可分离平衡码编解码方案。这些代码有2/spl middot/m位信息数字和m/spl middot/(R-2)位校验数字在R/spl ges/4中,2/spl middot/m-1位信息数字和m+1位校验数字在R=3中,码长n=R/spl middot/m。在码长和进位的实际使用中,与被称为最优无序码的多值贝格码相比,所提出的码是有效的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On multiple-valued separable unordered codes
A new encoding/decoding scheme of multiple-valued separable balanced codes are presented. These codes have 2/spl middot/m information digits and m/spl middot/(R-2) check digits in radices R/spl ges/4, and 2/spl middot/m-1 information digits and m+1 check digits in R=3 where code-length n=R/spl middot/m. In actual use of code-lengths and radices, it is shown that the presented codes are efficient in comparison with multiple-valued Berger-codes which are known as optimal unordered codes.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信