{"title":"实时人体运动分析及基于ik的人体图形控制","authors":"S. Yonemoto, Daisaku Arita, R. Taniguchi","doi":"10.1109/HUMO.2000.897385","DOIUrl":null,"url":null,"abstract":"The paper presents real-time human motion analysis based on real-time inverse kinematics. Our purpose is to realize a mechanism of human-machine interaction via human gestures, and, as a first step, we have developed a computer-vision-based human motion analysis system. In general, man-machine \"smart\" interaction requires a real-time human full-body motion capturing system without special devices or markers. However, since such a vision-based human motion capturing system is essentially unstable and can only acquire partial information because of self-occlusion, we have to introduce a robust pose estimation strategy, or an appropriate human motion synthesis based on motion filtering. To solve this problem, we have developed a method based on inverse kinematics, which can estimate human postures with limited perceptual cues such as positions of a head, hands and feet. We outline a real-time and on-line human motion capture system and demonstrate a simple interaction system based on the motion capture system.","PeriodicalId":384462,"journal":{"name":"Proceedings Workshop on Human Motion","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Real-time human motion analysis and IK-based human figure control\",\"authors\":\"S. Yonemoto, Daisaku Arita, R. Taniguchi\",\"doi\":\"10.1109/HUMO.2000.897385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents real-time human motion analysis based on real-time inverse kinematics. Our purpose is to realize a mechanism of human-machine interaction via human gestures, and, as a first step, we have developed a computer-vision-based human motion analysis system. In general, man-machine \\\"smart\\\" interaction requires a real-time human full-body motion capturing system without special devices or markers. However, since such a vision-based human motion capturing system is essentially unstable and can only acquire partial information because of self-occlusion, we have to introduce a robust pose estimation strategy, or an appropriate human motion synthesis based on motion filtering. To solve this problem, we have developed a method based on inverse kinematics, which can estimate human postures with limited perceptual cues such as positions of a head, hands and feet. We outline a real-time and on-line human motion capture system and demonstrate a simple interaction system based on the motion capture system.\",\"PeriodicalId\":384462,\"journal\":{\"name\":\"Proceedings Workshop on Human Motion\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Workshop on Human Motion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMO.2000.897385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Workshop on Human Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMO.2000.897385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time human motion analysis and IK-based human figure control
The paper presents real-time human motion analysis based on real-time inverse kinematics. Our purpose is to realize a mechanism of human-machine interaction via human gestures, and, as a first step, we have developed a computer-vision-based human motion analysis system. In general, man-machine "smart" interaction requires a real-time human full-body motion capturing system without special devices or markers. However, since such a vision-based human motion capturing system is essentially unstable and can only acquire partial information because of self-occlusion, we have to introduce a robust pose estimation strategy, or an appropriate human motion synthesis based on motion filtering. To solve this problem, we have developed a method based on inverse kinematics, which can estimate human postures with limited perceptual cues such as positions of a head, hands and feet. We outline a real-time and on-line human motion capture system and demonstrate a simple interaction system based on the motion capture system.