{"title":"广域网上时变体积数据的高性能可视化","authors":"K. Ma, David Camp","doi":"10.1109/SC.2000.10000","DOIUrl":null,"url":null,"abstract":"This paper presents an end-to-end, low-cost solution for visualizing time-varying volume data rendered on a parallel computer located at a remote site. Pipelining and careful grouping of processors are used to hide I/O time and to maximize processors utilization. Compression is used to significantly cut down the cost of transferring output images from the parallel computer to a display device through a widearea network. This complete rendering pipeline makes possible highly efficient rendering and remote viewing of high resolution time-varying data sets in the absence of high-speed network and parallel I/O support. To study the performance of this rendering pipeline and to demonstrate high-performance remote visualization, tests were conducted on a PC cluster in Japan as well as an SGI Origin 2000 operated at the NASA Ames Research Center with the display located at UC Davis.","PeriodicalId":228250,"journal":{"name":"ACM/IEEE SC 2000 Conference (SC'00)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":"{\"title\":\"High Performance Visualization of Time-Varying Volume Data over a Wide-Area Network\",\"authors\":\"K. Ma, David Camp\",\"doi\":\"10.1109/SC.2000.10000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an end-to-end, low-cost solution for visualizing time-varying volume data rendered on a parallel computer located at a remote site. Pipelining and careful grouping of processors are used to hide I/O time and to maximize processors utilization. Compression is used to significantly cut down the cost of transferring output images from the parallel computer to a display device through a widearea network. This complete rendering pipeline makes possible highly efficient rendering and remote viewing of high resolution time-varying data sets in the absence of high-speed network and parallel I/O support. To study the performance of this rendering pipeline and to demonstrate high-performance remote visualization, tests were conducted on a PC cluster in Japan as well as an SGI Origin 2000 operated at the NASA Ames Research Center with the display located at UC Davis.\",\"PeriodicalId\":228250,\"journal\":{\"name\":\"ACM/IEEE SC 2000 Conference (SC'00)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"119\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2000 Conference (SC'00)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2000.10000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2000 Conference (SC'00)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2000.10000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Performance Visualization of Time-Varying Volume Data over a Wide-Area Network
This paper presents an end-to-end, low-cost solution for visualizing time-varying volume data rendered on a parallel computer located at a remote site. Pipelining and careful grouping of processors are used to hide I/O time and to maximize processors utilization. Compression is used to significantly cut down the cost of transferring output images from the parallel computer to a display device through a widearea network. This complete rendering pipeline makes possible highly efficient rendering and remote viewing of high resolution time-varying data sets in the absence of high-speed network and parallel I/O support. To study the performance of this rendering pipeline and to demonstrate high-performance remote visualization, tests were conducted on a PC cluster in Japan as well as an SGI Origin 2000 operated at the NASA Ames Research Center with the display located at UC Davis.