G. Vergos, S. Sotiroudis, G. Athanasiadou, G. Tsoulos, S. Goudos
{"title":"空对地路径损失预测的机器学习方法比较","authors":"G. Vergos, S. Sotiroudis, G. Athanasiadou, G. Tsoulos, S. Goudos","doi":"10.1109/MOCAST52088.2021.9493374","DOIUrl":null,"url":null,"abstract":"Machine Learning-based models gain increasingly momentum regarding the problem of path loss prediction. The work at hand deploys four machine learning algorithms (k Nearest Neighbors - kNN, Support Vector Regression - SVR, Random Forest - RF and AdaBoost), in order to simulate the radio coverage provided from a flying base station in the greek city of Tripolis. Their comparison shows that tree-based ensemble models (RF and AdaBoost) can be used as fast and reliable alternatives to the Ray Tracing technique.","PeriodicalId":146990,"journal":{"name":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparing Machine Learning Methods for Air-to-Ground Path Loss Prediction\",\"authors\":\"G. Vergos, S. Sotiroudis, G. Athanasiadou, G. Tsoulos, S. Goudos\",\"doi\":\"10.1109/MOCAST52088.2021.9493374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning-based models gain increasingly momentum regarding the problem of path loss prediction. The work at hand deploys four machine learning algorithms (k Nearest Neighbors - kNN, Support Vector Regression - SVR, Random Forest - RF and AdaBoost), in order to simulate the radio coverage provided from a flying base station in the greek city of Tripolis. Their comparison shows that tree-based ensemble models (RF and AdaBoost) can be used as fast and reliable alternatives to the Ray Tracing technique.\",\"PeriodicalId\":146990,\"journal\":{\"name\":\"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MOCAST52088.2021.9493374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOCAST52088.2021.9493374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing Machine Learning Methods for Air-to-Ground Path Loss Prediction
Machine Learning-based models gain increasingly momentum regarding the problem of path loss prediction. The work at hand deploys four machine learning algorithms (k Nearest Neighbors - kNN, Support Vector Regression - SVR, Random Forest - RF and AdaBoost), in order to simulate the radio coverage provided from a flying base station in the greek city of Tripolis. Their comparison shows that tree-based ensemble models (RF and AdaBoost) can be used as fast and reliable alternatives to the Ray Tracing technique.