Finedge:面向NFV网络的动态、高性价比的边缘资源管理平台

Miao Li, Qixia Zhang, Fangming Liu
{"title":"Finedge:面向NFV网络的动态、高性价比的边缘资源管理平台","authors":"Miao Li, Qixia Zhang, Fangming Liu","doi":"10.1109/IWQoS49365.2020.9212908","DOIUrl":null,"url":null,"abstract":"With the evolution of network function virtualization (NFV) and edge computing, software-based network functions (NFs) can be deployed on closer-to-end-user edge servers to support a broad range of new services with high bandwidth and low latency. However, due to the resource limitation, strict QoS requirements and real-time flow fluctuations in edge network, existing cloud-based resource management strategy in NFV platforms is inefficient to be applied to the edge. Thus, we propose Finedge, $a$ dynamic, fine-grained and cost-efficient edge resource management platform for NFV network. First, we conduct empirical experiments to find out the effect of NFs' resource allocation and their flow-level characteristics on performance. Then, by jointly considering these factors and QoS requirements (e.g., latency and packet loss rate), Finedge can automatically assign the most suitable CPU core and tune the most cost-efficient CPU quota to each NF. Finedge is also implemented with some key strategies including real-time flow monitoring, elastic resource scaling up and down, and also flexible NF migration among cores. Through extensive evaluations, we validate that Finedge can efficiently handle heterogeneous flows with the lowest CPU quota and the highest SLA satisfaction rate as compared with the default OS scheduler and other state-of-the-art resource management schemes.","PeriodicalId":177899,"journal":{"name":"2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Finedge: A Dynamic Cost-Efficient Edge Resource Management Platform for NFV Network\",\"authors\":\"Miao Li, Qixia Zhang, Fangming Liu\",\"doi\":\"10.1109/IWQoS49365.2020.9212908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the evolution of network function virtualization (NFV) and edge computing, software-based network functions (NFs) can be deployed on closer-to-end-user edge servers to support a broad range of new services with high bandwidth and low latency. However, due to the resource limitation, strict QoS requirements and real-time flow fluctuations in edge network, existing cloud-based resource management strategy in NFV platforms is inefficient to be applied to the edge. Thus, we propose Finedge, $a$ dynamic, fine-grained and cost-efficient edge resource management platform for NFV network. First, we conduct empirical experiments to find out the effect of NFs' resource allocation and their flow-level characteristics on performance. Then, by jointly considering these factors and QoS requirements (e.g., latency and packet loss rate), Finedge can automatically assign the most suitable CPU core and tune the most cost-efficient CPU quota to each NF. Finedge is also implemented with some key strategies including real-time flow monitoring, elastic resource scaling up and down, and also flexible NF migration among cores. Through extensive evaluations, we validate that Finedge can efficiently handle heterogeneous flows with the lowest CPU quota and the highest SLA satisfaction rate as compared with the default OS scheduler and other state-of-the-art resource management schemes.\",\"PeriodicalId\":177899,\"journal\":{\"name\":\"2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWQoS49365.2020.9212908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS49365.2020.9212908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

随着网络功能虚拟化(NFV)和边缘计算技术的发展,基于软件的网络功能(NFs)可以部署在更接近终端用户的边缘服务器上,以支持各种高带宽、低延迟的新业务。然而,由于边缘网络的资源限制、严格的QoS要求和实时流量波动,现有的NFV平台基于云的资源管理策略在边缘网络中的应用效率较低。因此,我们提出Finedge,一个动态的、细粒度的、经济高效的NFV网络边缘资源管理平台。首先,我们进行了实证实验,找出NFs资源分配及其流级特征对绩效的影响。然后,通过综合考虑这些因素和QoS需求(例如,延迟和丢包率),Finedge可以自动分配最合适的CPU核心,并为每个NF调优最经济的CPU配额。Finedge还采用了一些关键策略来实现,包括实时流量监控、资源的弹性伸缩以及核间的灵活NF迁移。通过广泛的评估,我们验证了Finedge与默认操作系统调度器和其他最先进的资源管理方案相比,可以以最低的CPU配额和最高的SLA满意率有效地处理异构流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finedge: A Dynamic Cost-Efficient Edge Resource Management Platform for NFV Network
With the evolution of network function virtualization (NFV) and edge computing, software-based network functions (NFs) can be deployed on closer-to-end-user edge servers to support a broad range of new services with high bandwidth and low latency. However, due to the resource limitation, strict QoS requirements and real-time flow fluctuations in edge network, existing cloud-based resource management strategy in NFV platforms is inefficient to be applied to the edge. Thus, we propose Finedge, $a$ dynamic, fine-grained and cost-efficient edge resource management platform for NFV network. First, we conduct empirical experiments to find out the effect of NFs' resource allocation and their flow-level characteristics on performance. Then, by jointly considering these factors and QoS requirements (e.g., latency and packet loss rate), Finedge can automatically assign the most suitable CPU core and tune the most cost-efficient CPU quota to each NF. Finedge is also implemented with some key strategies including real-time flow monitoring, elastic resource scaling up and down, and also flexible NF migration among cores. Through extensive evaluations, we validate that Finedge can efficiently handle heterogeneous flows with the lowest CPU quota and the highest SLA satisfaction rate as compared with the default OS scheduler and other state-of-the-art resource management schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信