在一个积分等式上

A. A. Dmitriev
{"title":"在一个积分等式上","authors":"A. A. Dmitriev","doi":"10.47910/femj202204","DOIUrl":null,"url":null,"abstract":"The note proves the equality $\\frac1{2\\pi i}\\mskip-8mu\\oint_{|z|=r}\\mskip-8mu\\ln\\mskip-4mu\\left[1{-}f(z)\\left(z{+}\\frac1z\\right)\\right]dz=-\\frac1{2\\pi i}\\mskip-8mu\\oint_{|z|=r}\\mskip-4mu\\exp\\left(\\frac{1{-}\\sqrt{1-4f^2(z)}}{2zf(z)}\\right)dz.$","PeriodicalId":388451,"journal":{"name":"Dal'nevostochnyi Matematicheskii Zhurnal","volume":"1997 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On one equality of integrals\",\"authors\":\"A. A. Dmitriev\",\"doi\":\"10.47910/femj202204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The note proves the equality $\\\\frac1{2\\\\pi i}\\\\mskip-8mu\\\\oint_{|z|=r}\\\\mskip-8mu\\\\ln\\\\mskip-4mu\\\\left[1{-}f(z)\\\\left(z{+}\\\\frac1z\\\\right)\\\\right]dz=-\\\\frac1{2\\\\pi i}\\\\mskip-8mu\\\\oint_{|z|=r}\\\\mskip-4mu\\\\exp\\\\left(\\\\frac{1{-}\\\\sqrt{1-4f^2(z)}}{2zf(z)}\\\\right)dz.$\",\"PeriodicalId\":388451,\"journal\":{\"name\":\"Dal'nevostochnyi Matematicheskii Zhurnal\",\"volume\":\"1997 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dal'nevostochnyi Matematicheskii Zhurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47910/femj202204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dal'nevostochnyi Matematicheskii Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47910/femj202204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纸条证明了等式 $\frac1{2\pi i}\mskip-8mu\oint_{|z|=r}\mskip-8mu\ln\mskip-4mu\left[1{-}f(z)\left(z{+}\frac1z\right)\right]dz=-\frac1{2\pi i}\mskip-8mu\oint_{|z|=r}\mskip-4mu\exp\left(\frac{1{-}\sqrt{1-4f^2(z)}}{2zf(z)}\right)dz.$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On one equality of integrals
The note proves the equality $\frac1{2\pi i}\mskip-8mu\oint_{|z|=r}\mskip-8mu\ln\mskip-4mu\left[1{-}f(z)\left(z{+}\frac1z\right)\right]dz=-\frac1{2\pi i}\mskip-8mu\oint_{|z|=r}\mskip-4mu\exp\left(\frac{1{-}\sqrt{1-4f^2(z)}}{2zf(z)}\right)dz.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信