基于随机神经网络的模糊建模预测方法研究

Li Bo, Zhang Shi-ying, W. Xiufeng
{"title":"基于随机神经网络的模糊建模预测方法研究","authors":"Li Bo, Zhang Shi-ying, W. Xiufeng","doi":"10.1080/0232929032000115074","DOIUrl":null,"url":null,"abstract":"In this article, a novel modeling forecasting method based on the combination of the Modified Takagi and Sugeno (MTS) fuzzy model and the stochastic neural network is presented. Expectation–Maximization (EM) algorithm is put forward to calculate the parameters of neural network structure and its weights. Theoretical analysis and prediction examples all show that the technique has strong universalized capabilities and the methods are effective.","PeriodicalId":348685,"journal":{"name":"Systems Analysis Modelling Simulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Research on fuzzy modeling forecasting method based on stochastic neural network\",\"authors\":\"Li Bo, Zhang Shi-ying, W. Xiufeng\",\"doi\":\"10.1080/0232929032000115074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a novel modeling forecasting method based on the combination of the Modified Takagi and Sugeno (MTS) fuzzy model and the stochastic neural network is presented. Expectation–Maximization (EM) algorithm is put forward to calculate the parameters of neural network structure and its weights. Theoretical analysis and prediction examples all show that the technique has strong universalized capabilities and the methods are effective.\",\"PeriodicalId\":348685,\"journal\":{\"name\":\"Systems Analysis Modelling Simulation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Analysis Modelling Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0232929032000115074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Analysis Modelling Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0232929032000115074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于修正Takagi和Sugeno (MTS)模糊模型与随机神经网络相结合的新型建模预测方法。提出了期望最大化(EM)算法来计算神经网络结构参数及其权重。理论分析和预测实例均表明,该技术具有较强的通用性,方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on fuzzy modeling forecasting method based on stochastic neural network
In this article, a novel modeling forecasting method based on the combination of the Modified Takagi and Sugeno (MTS) fuzzy model and the stochastic neural network is presented. Expectation–Maximization (EM) algorithm is put forward to calculate the parameters of neural network structure and its weights. Theoretical analysis and prediction examples all show that the technique has strong universalized capabilities and the methods are effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信