动态多目标优化的动态距离最小化问题

Heiner Zille, Andre Kottenhahn, Sanaz Mostaghim
{"title":"动态多目标优化的动态距离最小化问题","authors":"Heiner Zille, Andre Kottenhahn, Sanaz Mostaghim","doi":"10.1109/CEC.2017.7969411","DOIUrl":null,"url":null,"abstract":"In this article we propose a new dynamic multi-objective optimization problem. This dynamic Distance Minimization Problem (dDMP) functions as a benchmark problem for dynamic multi-objective optimization and is based on the static versions from the literature. The dDMP introduces a useful property and challenge for dynamic multi-objective algorithms. Not only the positions of the Pareto-optimal solutions in the search space change over time, but also the complexity of the problem can be adjusted dynamically. In addition the problem is based on a simple geometric structure, which makes it useful to visualize the search behaviour of algorithms. We describe the basic principles of the problem, and introduce the possible dynamic changes and their implementation and effects of the Pareto-optimal areas. Our experiments show how a possible instance of the dynamic DMP can be defined and how different algorithms react to the dynamic changes.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Dynamic Distance Minimization Problems for dynamic multi-objective optimization\",\"authors\":\"Heiner Zille, Andre Kottenhahn, Sanaz Mostaghim\",\"doi\":\"10.1109/CEC.2017.7969411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we propose a new dynamic multi-objective optimization problem. This dynamic Distance Minimization Problem (dDMP) functions as a benchmark problem for dynamic multi-objective optimization and is based on the static versions from the literature. The dDMP introduces a useful property and challenge for dynamic multi-objective algorithms. Not only the positions of the Pareto-optimal solutions in the search space change over time, but also the complexity of the problem can be adjusted dynamically. In addition the problem is based on a simple geometric structure, which makes it useful to visualize the search behaviour of algorithms. We describe the basic principles of the problem, and introduce the possible dynamic changes and their implementation and effects of the Pareto-optimal areas. Our experiments show how a possible instance of the dynamic DMP can be defined and how different algorithms react to the dynamic changes.\",\"PeriodicalId\":335123,\"journal\":{\"name\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2017.7969411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种新的动态多目标优化问题。此动态距离最小化问题(dDMP)作为动态多目标优化的基准问题,以文献中的静态版本为基础。dDMP为动态多目标算法带来了一个有用的特性和挑战。不仅pareto最优解在搜索空间中的位置随时间变化,而且问题的复杂程度也可以动态调整。此外,该问题基于一个简单的几何结构,这使得可视化算法的搜索行为非常有用。我们描述了问题的基本原理,并介绍了可能的动态变化及其实现和帕累托最优区域的影响。我们的实验展示了如何定义动态DMP的可能实例,以及不同的算法如何对动态变化做出反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Distance Minimization Problems for dynamic multi-objective optimization
In this article we propose a new dynamic multi-objective optimization problem. This dynamic Distance Minimization Problem (dDMP) functions as a benchmark problem for dynamic multi-objective optimization and is based on the static versions from the literature. The dDMP introduces a useful property and challenge for dynamic multi-objective algorithms. Not only the positions of the Pareto-optimal solutions in the search space change over time, but also the complexity of the problem can be adjusted dynamically. In addition the problem is based on a simple geometric structure, which makes it useful to visualize the search behaviour of algorithms. We describe the basic principles of the problem, and introduce the possible dynamic changes and their implementation and effects of the Pareto-optimal areas. Our experiments show how a possible instance of the dynamic DMP can be defined and how different algorithms react to the dynamic changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信