K. Schmalz, J. Borngraber, P. Neumaier, N. Rothbart, D. Kissinger, H. Hubers
{"title":"使用SiGe BiCMOS发射机和接收机的245 GHz和500 GHz气体光谱系统","authors":"K. Schmalz, J. Borngraber, P. Neumaier, N. Rothbart, D. Kissinger, H. Hubers","doi":"10.1109/GSMM.2016.7500289","DOIUrl":null,"url":null,"abstract":"A compact gas spectroscopy system is demonstrated, which contains a transmitter (TX) and a receiver (RX) in SiGe BiCMOS, as well as a gas absorption cell. The sensitivity of this spectroscopy system is demonstrated by measuring the high-resolution 2f absorption spectrum (second harmonic detection) of gaseous methanol (CH3OH) at 238-252 GHz, and at 495-497 GHz. The 245 GHz TX consists of a 120 GHz local oscillator (LO) and a frequency doubler, and the 245 GHz RX includes a low noise amplifier (LNA), a LO, and an active subharmonic mixer. A 245 GHz TX-array increases significantly the sensitivity of the sensor system. The 500 GHz system includes a TX-array, and a subharmonic RX with a transconductance mixer. The 500 GHz TX contains a frequency quadrupler, and the RX uses a frequency doubler for the LO. The LOs of the RX and the TX are controlled by two external phase-locked loops (PLLs).","PeriodicalId":156809,"journal":{"name":"2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Gas spectroscopy system at 245 and 500 GHz using transmitters and receivers in SiGe BiCMOS\",\"authors\":\"K. Schmalz, J. Borngraber, P. Neumaier, N. Rothbart, D. Kissinger, H. Hubers\",\"doi\":\"10.1109/GSMM.2016.7500289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compact gas spectroscopy system is demonstrated, which contains a transmitter (TX) and a receiver (RX) in SiGe BiCMOS, as well as a gas absorption cell. The sensitivity of this spectroscopy system is demonstrated by measuring the high-resolution 2f absorption spectrum (second harmonic detection) of gaseous methanol (CH3OH) at 238-252 GHz, and at 495-497 GHz. The 245 GHz TX consists of a 120 GHz local oscillator (LO) and a frequency doubler, and the 245 GHz RX includes a low noise amplifier (LNA), a LO, and an active subharmonic mixer. A 245 GHz TX-array increases significantly the sensitivity of the sensor system. The 500 GHz system includes a TX-array, and a subharmonic RX with a transconductance mixer. The 500 GHz TX contains a frequency quadrupler, and the RX uses a frequency doubler for the LO. The LOs of the RX and the TX are controlled by two external phase-locked loops (PLLs).\",\"PeriodicalId\":156809,\"journal\":{\"name\":\"2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GSMM.2016.7500289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSMM.2016.7500289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gas spectroscopy system at 245 and 500 GHz using transmitters and receivers in SiGe BiCMOS
A compact gas spectroscopy system is demonstrated, which contains a transmitter (TX) and a receiver (RX) in SiGe BiCMOS, as well as a gas absorption cell. The sensitivity of this spectroscopy system is demonstrated by measuring the high-resolution 2f absorption spectrum (second harmonic detection) of gaseous methanol (CH3OH) at 238-252 GHz, and at 495-497 GHz. The 245 GHz TX consists of a 120 GHz local oscillator (LO) and a frequency doubler, and the 245 GHz RX includes a low noise amplifier (LNA), a LO, and an active subharmonic mixer. A 245 GHz TX-array increases significantly the sensitivity of the sensor system. The 500 GHz system includes a TX-array, and a subharmonic RX with a transconductance mixer. The 500 GHz TX contains a frequency quadrupler, and the RX uses a frequency doubler for the LO. The LOs of the RX and the TX are controlled by two external phase-locked loops (PLLs).